These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 19944156)
21. Coding of envelope modulation in the auditory nerve and anteroventral cochlear nucleus. Wang X; Sachs MB Philos Trans R Soc Lond B Biol Sci; 1992 Jun; 336(1278):399-402. PubMed ID: 1354380 [TBL] [Abstract][Full Text] [Related]
22. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus. Oline SN; Ashida G; Burger RM J Neurosci; 2016 Aug; 36(32):8500-15. PubMed ID: 27511020 [TBL] [Abstract][Full Text] [Related]
23. Multilinear models of single cell responses in the medial nucleus of the trapezoid body. Englitz B; Ahrens M; Tolnai S; Rübsamen R; Sahani M; Jost J Network; 2010; 21(1-2):91-124. PubMed ID: 20735339 [TBL] [Abstract][Full Text] [Related]
24. Evidence that the compound action potential (CAP) from the auditory nerve is a stationary potential generated across dura mater. Brown DJ; Patuzzi RB Hear Res; 2010 Aug; 267(1-2):12-26. PubMed ID: 20430085 [TBL] [Abstract][Full Text] [Related]
25. Sensitivity of cochlear nucleus neurons to spatio-temporal changes in auditory nerve activity. Wang GI; Delgutte B J Neurophysiol; 2012 Dec; 108(12):3172-95. PubMed ID: 22972956 [TBL] [Abstract][Full Text] [Related]
26. Effects of contralateral sound stimulation on unit activity of ventral cochlear nucleus neurons. Shore SE; Sumner CJ; Bledsoe SC; Lu J Exp Brain Res; 2003 Dec; 153(4):427-35. PubMed ID: 12961054 [TBL] [Abstract][Full Text] [Related]
27. A physiologically based model for temporal envelope encoding in human primary auditory cortex. Dugué P; Le Bouquin-Jeannès R; Edeline JM; Faucon G Hear Res; 2010 Sep; 268(1-2):133-44. PubMed ID: 20685388 [TBL] [Abstract][Full Text] [Related]
28. Lateral suppression and inhibition in the cochlear nucleus of the cat. Rhode WS; Greenberg S J Neurophysiol; 1994 Feb; 71(2):493-514. PubMed ID: 8176421 [TBL] [Abstract][Full Text] [Related]
29. Physiological correlates of comodulation masking release in the mammalian ventral cochlear nucleus. Pressnitzer D; Meddis R; Delahaye R; Winter IM J Neurosci; 2001 Aug; 21(16):6377-86. PubMed ID: 11487661 [TBL] [Abstract][Full Text] [Related]
30. Superficial stellate cells of the dorsal cochlear nucleus. Apostolides PF; Trussell LO Front Neural Circuits; 2014; 8():63. PubMed ID: 24959121 [TBL] [Abstract][Full Text] [Related]
31. Robustness of a neural network model for differencing. Solodovnikov A; Reed MC J Comput Neurosci; 2001; 11(2):165-73. PubMed ID: 11717532 [TBL] [Abstract][Full Text] [Related]
32. Improving the dynamics of responses to amplitude modulated stimuli by modeling inhibitory interneurons in cochlear nucleus. Dugué P; Le Bouquin Jeannès R; Faucon G Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1286-9. PubMed ID: 18002198 [TBL] [Abstract][Full Text] [Related]
33. [Some Features of Sound Signal Envelope by the Frog's Cochlear Nucleus Neurons]. Bibikov NG Biofizika; 2015; 60(3):506-18. PubMed ID: 26349214 [TBL] [Abstract][Full Text] [Related]
34. Intrinsic physiological properties underlie auditory response diversity in the avian cochlear nucleus. Brown DH; Hyson RL J Neurophysiol; 2019 Mar; 121(3):908-927. PubMed ID: 30649984 [TBL] [Abstract][Full Text] [Related]
35. Aged-related loss of temporal processing: altered responses to amplitude modulated tones in rat dorsal cochlear nucleus. Schatteman TA; Hughes LF; Caspary DM Neuroscience; 2008 Jun; 154(1):329-37. PubMed ID: 18384967 [TBL] [Abstract][Full Text] [Related]
36. The onset and post-onset auditory responses of cochlear nucleus neurons are modulated differently by cortical activation. Liu X; Zhang O; Qi J; Chen A; Hu K; Yan J Hear Res; 2019 Mar; 373():96-102. PubMed ID: 30640070 [TBL] [Abstract][Full Text] [Related]
37. Generating synchrony from the asynchronous: compensation for cochlear traveling wave delays by the dendrites of individual brainstem neurons. McGinley MJ; Liberman MC; Bal R; Oertel D J Neurosci; 2012 Jul; 32(27):9301-11. PubMed ID: 22764237 [TBL] [Abstract][Full Text] [Related]
38. A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. Nelson PC; Carney LH J Acoust Soc Am; 2004 Oct; 116(4 Pt 1):2173-86. PubMed ID: 15532650 [TBL] [Abstract][Full Text] [Related]
39. A primary acoustic startle pathway: obligatory role of cochlear root neurons and the nucleus reticularis pontis caudalis. Lee Y; López DE; Meloni EG; Davis M J Neurosci; 1996 Jun; 16(11):3775-89. PubMed ID: 8642420 [TBL] [Abstract][Full Text] [Related]