BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19944577)

  • 1. Gene- and evidence-based candidate gene selection for schizophrenia and gene feature analysis.
    Sun J; Han L; Zhao Z
    Artif Intell Med; 2010; 48(2-3):99-106. PubMed ID: 19944577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Candidate genes for schizophrenia: a survey of association studies and gene ranking.
    Sun J; Kuo PH; Riley BP; Kendler KS; Zhao Z
    Am J Med Genet B Neuropsychiatr Genet; 2008 Oct; 147B(7):1173-81. PubMed ID: 18361404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mega-analysis of Odds Ratio: A Convergent Method for a Deep Understanding of the Genetic Evidence in Schizophrenia.
    Jia P; Chen X; Xie W; Kendler KS; Zhao Z
    Schizophr Bull; 2019 Apr; 45(3):698-708. PubMed ID: 29931221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association study of 167 candidate genes for schizophrenia selected by a multi-domain evidence-based prioritization algorithm and neurodevelopmental hypothesis.
    Zhao Z; Webb BT; Jia P; Bigdeli TB; Maher BS; van den Oord E; Bergen SE; Amdur RL; O'Neill FA; Walsh D; Thiselton DL; Chen X; Pato CN; ; Riley BP; Kendler KS; Fanous AH
    PLoS One; 2013; 8(7):e67776. PubMed ID: 23922650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the gene signature reflecting schizophrenia's etiology by constructing artificial intelligence-based method of enhanced reproducibility.
    Yang QX; Wang YX; Li FC; Zhang S; Luo YC; Li Y; Tang J; Li B; Chen YZ; Xue WW; Zhu F
    CNS Neurosci Ther; 2019 Sep; 25(9):1054-1063. PubMed ID: 31350824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A GMM-IG framework for selecting genes as expression panel biomarkers.
    Wang M; Chen JY
    Artif Intell Med; 2010; 48(2-3):75-82. PubMed ID: 20004087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Schizophrenia gene networks and pathways and their applications for novel candidate gene selection.
    Sun J; Jia P; Fanous AH; van den Oord E; Chen X; Riley BP; Amdur RL; Kendler KS; Zhao Z
    PLoS One; 2010 Jun; 5(6):e11351. PubMed ID: 20613869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SZGR: a comprehensive schizophrenia gene resource.
    Jia P; Sun J; Guo AY; Zhao Z
    Mol Psychiatry; 2010 May; 15(5):453-62. PubMed ID: 20424623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating genome-wide association study and methylation functional annotation data identified candidate genes and pathways for schizophrenia.
    Qi X; Guan F; Wen Y; Li P; Ma M; Cheng S; Zhang L; Liang C; Cheng B; Zhang F
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Jan; 96():109736. PubMed ID: 31425724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrative systems biology approaches to identify and prioritize disease and drug candidate genes.
    Kaimal V; Sardana D; Bardes EE; Gudivada RC; Chen J; Jegga AG
    Methods Mol Biol; 2011; 700():241-59. PubMed ID: 21204038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-dimensional evidence-based candidate gene prioritization approach for complex diseases-schizophrenia as a case.
    Sun J; Jia P; Fanous AH; Webb BT; van den Oord EJ; Chen X; Bukszar J; Kendler KS; Zhao Z
    Bioinformatics; 2009 Oct; 25(19):2595-6602. PubMed ID: 19602527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A methodology based on molecular interactions and pathways to find candidate genes associated to diseases: its application to schizophrenia and Alzheimer's disease.
    Ochagavía ME; Miranda J; Nazábal M; Martin A; Novoa LI; Bringas R; Fernández-DE-Cossío J; Camacho H
    J Bioinform Comput Biol; 2011 Aug; 9(4):541-57. PubMed ID: 21776608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Candidate gene prioritization by network analysis of differential expression using machine learning approaches.
    Nitsch D; Gonçalves JP; Ojeda F; de Moor B; Moreau Y
    BMC Bioinformatics; 2010 Sep; 11():460. PubMed ID: 20840752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of text- and data-mining using ontologies successfully selects disease gene candidates.
    Tiffin N; Kelso JF; Powell AR; Pan H; Bajic VB; Hide WA
    Nucleic Acids Res; 2005; 33(5):1544-52. PubMed ID: 15767279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing large language models (LLMs) for candidate gene prioritization and selection.
    Toufiq M; Rinchai D; Bettacchioli E; Kabeer BSA; Khan T; Subba B; White O; Yurieva M; George J; Jourde-Chiche N; Chiche L; Palucka K; Chaussabel D
    J Transl Med; 2023 Oct; 21(1):728. PubMed ID: 37845713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated feature selection and classification method to select minimum number of variables on the case study of gene expression data.
    Goh L; Kasabov N
    J Bioinform Comput Biol; 2005 Oct; 3(5):1107-36. PubMed ID: 16278950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prioritization of positional candidate genes using multiple web-based software tools.
    Thornblad TA; Elliott KS; Jowett J; Visscher PM
    Twin Res Hum Genet; 2007 Dec; 10(6):861-70. PubMed ID: 18179399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of vocabularies, representations and ranking algorithms for gene prioritization by text mining.
    Yu S; Van Vooren S; Tranchevent LC; De Moor B; Moreau Y
    Bioinformatics; 2008 Aug; 24(16):i119-25. PubMed ID: 18689812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SZGR 2.0: a one-stop shop of schizophrenia candidate genes.
    Jia P; Han G; Zhao J; Lu P; Zhao Z
    Nucleic Acids Res; 2017 Jan; 45(D1):D915-D924. PubMed ID: 27733502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.