These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 199450)

  • 21. Sodium-dependent plateau potentials in electrocytes of the electric fish Gymnotus carapo.
    Sierra F; Comas V; Buño W; Macadar O
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):1-11. PubMed ID: 15372305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Central projections of the octaval system in the thornback ray Platyrhinoidis triseriata.
    Plassmann W
    Neurosci Lett; 1982 Oct; 32(3):229-33. PubMed ID: 6294564
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and functional aspects of the fast electrosensory pathway in the electrosensory lateral line lobe of the pulse fish Gymnotus carapo.
    Castelló ME; Caputi A; Trujillo-Cenóz O
    J Comp Neurol; 1998 Nov; 401(4):549-63. PubMed ID: 9826277
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrophysiological characteristics of the Mauthner cell of the weakly electric fish Gymnotus carapo.
    Borde M; Pereda AE; Morales FR
    Brain Res; 1991 Dec; 567(1):145-8. PubMed ID: 1815822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global electrosensory oscillations enhance directional responses of midbrain neurons in eigenmannia.
    Ramcharitar JU; Tan EW; Fortune ES
    J Neurophysiol; 2006 Nov; 96(5):2319-26. PubMed ID: 16790600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of behavior-related excitatory inputs to a central pacemaker nucleus in a weakly electric fish.
    Curti S; Comas V; Rivero C; Borde M
    Neuroscience; 2006 Jun; 140(2):491-504. PubMed ID: 16563638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Receptive fields of cerebellar cells receiving exteroceptive input in a Gymnotid fish.
    Bastian J
    J Neurophysiol; 1975 Mar; 38(2):285-300. PubMed ID: 165269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Response properties of electrosensory neurons in the lateral mesencephalic nucleus of the paddlefish.
    Chagnaud BP; Wilkens LA; Hofmann MH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Mar; 194(3):209-20. PubMed ID: 18057942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct auditory and lateral line nuclei in the midbrain catfishes.
    Knudsen EI
    J Comp Neurol; 1977 Jun; 173(3):417-31. PubMed ID: 856890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in electric organ discharge after pausing the electromotor system of Gymnotus carapo.
    Schuster S
    J Exp Biol; 2000 May; 203(Pt 9):1433-46. PubMed ID: 10751159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variability of the electric organ discharge interval duration in resting Gymnotus carapo.
    Capurro A; Longtin A; Bagarinao E; Sato S; Macadar O; Pakdaman K
    Biol Cybern; 2001 Apr; 84(4):309-21. PubMed ID: 11324342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of midbrain raphe and lateral mesencephalic stimulation on spontaneous and evoked activity in the lateral geniculate of the cat.
    Foote WE; Maciewicz RJ; Mordes JP
    Exp Brain Res; 1974 Jan; 19(2):124-30. PubMed ID: 4361031
    [No Abstract]   [Full Text] [Related]  

  • 33. The electric sense of weakly electric fish.
    Heiligenberg W; Bastian J
    Annu Rev Physiol; 1984; 46():561-83. PubMed ID: 6324664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mormyrid mesencephalon. III. Retinal projections in a weakly electric fish, Gnathonemus petersii.
    Lázár G; Libouban S; Szabo T
    J Comp Neurol; 1984 Nov; 230(1):1-12. PubMed ID: 6096410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrosensory systems in the mormyrid fish, Gnathonemus petersii : special emphasis on the fast conducting pathway.
    Szabo T; Enger PS; Libouban S
    J Physiol (Paris); 1979; 75(4):409-20. PubMed ID: 512973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electric signals and schooling behavior in a weakly electric fish, Marcusenius cyprinoides L. (Mormyriformes).
    Moller P
    Science; 1976 Aug; 193(4254):697-9. PubMed ID: 948747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mesencephalic and diencephalic cobalt-lysine injections in an elasmobranch: evidence for two parallel electrosensory pathways.
    Schweitzer J; Lowe D
    Neurosci Lett; 1984 Feb; 44(3):317-22. PubMed ID: 6427711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural coding of difference frequencies in the midbrain of the electric fish Eigenmannia: reading the sense of rotation in an amplitude-phase plane.
    Rose G; Heiligenberg W
    J Comp Physiol A; 1986 May; 158(5):613-24. PubMed ID: 3735159
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deficit in object detection (electrolocation) following interruption of cerebellar function in the weakly electric fish, Apteronotus albifrons.
    Bombardieri RA; Feng AS
    Brain Res; 1977 Jul; 130(2):343-7. PubMed ID: 884528
    [No Abstract]   [Full Text] [Related]  

  • 40. [Regeneration of the electric organ in Gymnotus carapo (Pisces)].
    Baillet-Derbin C
    Arch Anat Microsc Morphol Exp; 1969; 58(4):387-92. PubMed ID: 5376800
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.