These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 19945116)

  • 1. Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by inductively coupled plasma-optical emission spectrometry as a fast technique for the simultaneous determination of heavy metals.
    Yamini Y; Rezaee M; Khanchi A; Faraji M; Saleh A
    J Chromatogr A; 2010 Apr; 1217(16):2358-64. PubMed ID: 19945116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple and rapid new dispersive liquid-liquid microextraction based on solidification of floating organic drop combined with inductively coupled plasma-optical emission spectrometry for preconcentration and determination of aluminium in water samples.
    Rezaee M; Yamini Y; Khanchi A; Faraji M; Saleh A
    J Hazard Mater; 2010 Jun; 178(1-3):766-70. PubMed ID: 20189303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of dispersive liquid-liquid microextraction coupled with inductively coupled plasma-optical emission spectrometry with the aid of experimental design for simultaneous determination of heavy metals in natural waters.
    Sereshti H; Khojeh V; Samadi S
    Talanta; 2011 Jan; 83(3):885-90. PubMed ID: 21147333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation/preconcentration and determination of vanadium with dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO) and electrothermal atomic absorption spectrometry.
    Asadollahi T; Dadfarnia S; Shabani AM
    Talanta; 2010 Jun; 82(1):208-12. PubMed ID: 20685458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersive liquid-liquid microextraction based on solidification of floating organic droplet followed by high-performance liquid chromatography with ultraviolet detection and liquid chromatography-tandem mass spectrometry for the determination of triclosan and 2,4-dichlorophenol in water samples.
    Zheng C; Zhao J; Bao P; Gao J; He J
    J Chromatogr A; 2011 Jun; 1218(25):3830-6. PubMed ID: 21601213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the steroid hormone levels in water samples by dispersive liquid-liquid microextraction with solidification of a floating organic drop followed by high-performance liquid chromatography.
    Chang CC; Huang SD
    Anal Chim Acta; 2010 Mar; 662(1):39-43. PubMed ID: 20152263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion-solidification liquid-liquid microextraction for volatile aromatic hydrocarbons determination: comparison with liquid phase microextraction based on the solidification of a floating drop.
    Vickackaite V; Pusvaskiene E
    J Sep Sci; 2009 Oct; 32(20):3512-20. PubMed ID: 19777454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples.
    Liu Y; Zhao E; Zhu W; Gao H; Zhou Z
    J Chromatogr A; 2009 Feb; 1216(6):885-91. PubMed ID: 19118833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of trace amount of silver using dispersive liquid-liquid based on solidification of floating organic drop microextraction.
    Afzali D; Mohadesi AR; Jahromi BB; Falahnejad M
    Anal Chim Acta; 2011 Jan; 684(1-2):45-9. PubMed ID: 21167984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-UV detection as a very simple, rapid and sensitive method for the determination of bisphenol A in water samples.
    Rezaee M; Yamini Y; Shariati S; Esrafili A; Shamsipur M
    J Chromatogr A; 2009 Feb; 1216(9):1511-4. PubMed ID: 19167003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous separation/preconcentration of ultra trace heavy metals in industrial wastewaters by dispersive liquid-liquid microextraction based on solidification of floating organic drop prior to determination by graphite furnace atomic absorption spectrometry.
    Mirzaei M; Behzadi M; Abadi NM; Beizaei A
    J Hazard Mater; 2011 Feb; 186(2-3):1739-43. PubMed ID: 21232852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligandless dispersive liquid-liquid microextraction for the separation of trace amounts of silver ions in water samples and flame atomic absorption spectrometry determination.
    Mohammadi SZ; Afzali D; Taher MA; Baghelani YM
    Talanta; 2009 Dec; 80(2):875-9. PubMed ID: 19836567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersive liquid-liquid microextraction method based on solidification of floating organic drop for extraction of organochlorine pesticides in water samples.
    Leong MI; Huang SD
    J Chromatogr A; 2009 Nov; 1216(45):7645-50. PubMed ID: 19766234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inductively coupled plasma-optical emission spectrometry/mass spectrometry for the determination of Cu, Ni, Pb and Zn in seawater after ionic imprinted polymer based solid phase extraction.
    Otero-Romaní J; Moreda-Piñeiro A; Bermejo-Barrera P; Martin-Esteban A
    Talanta; 2009 Aug; 79(3):723-9. PubMed ID: 19576436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of dispersive liquid-liquid microextraction method.
    Rezaee M; Yamini Y; Faraji M
    J Chromatogr A; 2010 Apr; 1217(16):2342-57. PubMed ID: 20005521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-line metals preconcentration and simultaneous determination using cloud point extraction and inductively coupled plasma optical emission spectrometry in water samples.
    Yamini Y; Faraji M; Shariati S; Hassani R; Ghambarian M
    Anal Chim Acta; 2008 Apr; 612(2):144-51. PubMed ID: 18358859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of volatile aldehyde biomarkers in human blood by derivatization and dispersive liquid-liquid microextraction based on solidification of floating organic droplet method by high performance liquid chromatography.
    Lili L; Xu H; Song D; Cui Y; Hu S; Zhang G
    J Chromatogr A; 2010 Apr; 1217(16):2365-70. PubMed ID: 20181347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry: ultra trace determination of cadmium in water samples.
    Zeini Jahromi E; Bidari A; Assadi Y; Milani Hosseini MR; Jamali MR
    Anal Chim Acta; 2007 Mar; 585(2):305-11. PubMed ID: 17386679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersive liquid-liquid microextraction followed by reversed phase-high performance liquid chromatography for the determination of polybrominated diphenyl ethers at trace levels in landfill leachate and environmental water samples.
    Li Y; Wei G; Hu J; Liu X; Zhao X; Wang X
    Anal Chim Acta; 2008 May; 615(1):96-103. PubMed ID: 18440368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by ICP-MS for the simultaneous determination of heavy metals in wastewaters.
    Li Y; Peng G; He Q; Zhu H; Al-Hamadani SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():156-61. PubMed ID: 25590827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.