BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 19945146)

  • 1. Three-phase metal kinetics in terrestrial invertebrates exposed to high metal concentrations.
    Laskowski R; Bednarska AJ; Spurgeon D; Svendsen C; van Gestel CA
    Sci Total Environ; 2010 Aug; 408(18):3794-802. PubMed ID: 19945146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-phase uptake of nickel in the ground beetle Pterostichus oblongopunctatus (Coleoptera: Carabidae): implications for invertebrate metal kinetics.
    Bednarska AJ; Brzeska A; Laskowski R
    Arch Environ Contam Toxicol; 2011 May; 60(4):722-33. PubMed ID: 20686892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake and elimination of cadmium and zinc by Eisenia andrei during exposure to low concentrations in artificial soil.
    Smith BA; Egeler P; Gilberg D; Hendershot W; Stephenson GL
    Arch Environ Contam Toxicol; 2010 Aug; 59(2):264-73. PubMed ID: 20130851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal kinetics and respiration rates in F1 generation of carabid beetles (Pterostichus oblongopunctatus F.) originating from metal-contaminated and reference areas.
    Lagisz M; Kramarz P; Niklinska M
    Arch Environ Contam Toxicol; 2005 May; 48(4):484-9. PubMed ID: 15886899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-response relationships for the accumulation of Cu, Ni and Zn by seven-spotted ladybirds (Coccinella septempunctata L.) under conditions of single and combined metal exposure.
    Green ID; Walmsley K
    Chemosphere; 2013 Sep; 93(1):184-9. PubMed ID: 23810517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal toxicokinetics and metal-driven damage to the gut of the ground beetle Pterostichus oblongopunctatus.
    Bednarska AJ; Laskowski R; Pyza E; Semik D; Świątek Z; Woźnicka O
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):22047-22058. PubMed ID: 27541151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the joint effects of a metal and a pesticide on reproduction and toxicokinetics in Lumbricid earthworms.
    Lister LJ; Svendsen C; Wright J; Hooper HL; Spurgeon DJ
    Environ Int; 2011 May; 37(4):663-70. PubMed ID: 21329984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural variation of copper, zinc, cadmium and selenium concentrations in Bembicium nanum and their potential use as a biomonitor of trace metals.
    Gay D; Maher W
    Water Res; 2003 May; 37(9):2173-85. PubMed ID: 12691903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu, and Zn.
    Shi D; Wang WX
    Environ Pollut; 2004 Nov; 132(2):265-77. PubMed ID: 15312939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Habitat type-based bioaccumulation and risk assessment of metal and As contamination in earthworms, beetles and woodlice.
    Vermeulen F; Van den Brink NW; D'Havé H; Mubiana VK; Blust R; Bervoets L; De Coen W
    Environ Pollut; 2009 Nov; 157(11):3098-105. PubMed ID: 19524344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal accumulation in earthworms inhabiting floodplain soils.
    Vijver MG; Vink JP; Miermans CJ; van Gestel CA
    Environ Pollut; 2007 Jul; 148(1):132-40. PubMed ID: 17254683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species-specific heavy metal accumulation patterns of earthworms on a floodplain in Japan.
    Kamitani T; Kaneko N
    Ecotoxicol Environ Saf; 2007 Jan; 66(1):82-91. PubMed ID: 16324743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling chronic exposure to contaminated soil: a toxicokinetic approach with the terrestrial snail Helix aspersa.
    Gimbert F; de Vaufleury A; Douay F; Scheifler R; Coeurdassier M; Badot PM
    Environ Int; 2006 Sep; 32(7):866-75. PubMed ID: 16824600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium bioaccumulation factors for terrestrial species: application of the mechanistic bioaccumulation model OMEGA to explain field data.
    Veltman K; Huijbregts MA; Hendriks AJ
    Sci Total Environ; 2008 Dec; 406(3):413-8. PubMed ID: 18722646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways of trace metal uptake in the lugworm Arenicola marina.
    Casado-Martinez MC; Smith BD; Delvalls TA; Rainbow PS
    Aquat Toxicol; 2009 Apr; 92(1):9-17. PubMed ID: 19181398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contaminant exposure in relation to spatio-temporal variation in diet composition: A case study of the little owl (Athene noctua).
    Schipper AM; Wijnhoven S; Baveco H; van den Brink NW
    Environ Pollut; 2012 Apr; 163():109-16. PubMed ID: 22325438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of soil chemistry on metal and bioessential element concentrations in nymphal and adult periodical cicadas (Magicicada spp.).
    Robinson GR; Sibrell PL; Boughton CJ; Yang LH
    Sci Total Environ; 2007 Mar; 374(2-3):367-78. PubMed ID: 17258290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicokinetics and toxicodynamics of nickel in Enchytraeus crypticus.
    He E; van Gestel CA
    Environ Toxicol Chem; 2013 Aug; 32(8):1835-41. PubMed ID: 23625585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of spatial and temporal variation in metal availability on earthworms in floodplain soils of the river Dommel, The Netherlands.
    Bleeker EA; van Gestel CA
    Environ Pollut; 2007 Aug; 148(3):824-32. PubMed ID: 17376569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammalian hair as an accumulative bioindicator of metal bioavailability in Australian terrestrial environments.
    McLean CM; Koller CE; Rodger JC; MacFarlane GR
    Sci Total Environ; 2009 May; 407(11):3588-96. PubMed ID: 19232676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.