These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19945333)

  • 1. A parametric study of cylindrical pedicle screw design implications on the pullout performance using an experimentally validated finite-element model.
    Chatzistergos PE; Magnissalis EA; Kourkoulis SK
    Med Eng Phys; 2010 Mar; 32(2):145-54. PubMed ID: 19945333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of bone screw induced pretension: the cases of under-tapping and conical profile.
    Chatzistergos PE; Magnissalis EA; Kourkoulis SK
    Med Eng Phys; 2014 Mar; 36(3):378-86. PubMed ID: 24388102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of the insertion technique on the pullout force of pedicle screws: an experimental study.
    Chatzistergos PE; Sapkas G; Kourkoulis SK
    Spine (Phila Pa 1976); 2010 Apr; 35(9):E332-7. PubMed ID: 20150834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses.
    Chao CK; Hsu CC; Wang JL; Lin J
    J Spinal Disord Tech; 2008 Apr; 21(2):130-8. PubMed ID: 18391719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting the pullout strength of cancellous bone screws.
    Chapman JR; Harrington RM; Lee KM; Anderson PA; Tencer AF; Kowalski D
    J Biomech Eng; 1996 Aug; 118(3):391-8. PubMed ID: 8872262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of bone material properties on effective region in screw-bone model: an experimental and finite element study.
    Liu S; Qi W; Zhang Y; Wu ZX; Yan YB; Lei W
    Biomed Eng Online; 2014 Jun; 13():83. PubMed ID: 24952724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pedicle screw fixation strength: pullout versus insertional torque.
    Inceoglu S; Ferrara L; McLain RF
    Spine J; 2004; 4(5):513-8. PubMed ID: 15363421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of the experimental and numerical results for the holding power of dental, traumatic, and spinal screws.
    Lee CC; Lin SC; Wu SW; Li YC; Fu PY
    Med Eng Phys; 2012 Oct; 34(8):1123-31. PubMed ID: 22269112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pullout performance of self-tapping medical screws.
    Wu Z; Nassar SA; Yang X
    J Biomech Eng; 2011 Nov; 133(11):111002. PubMed ID: 22168734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses.
    Hsu CC; Chao CK; Wang JL; Hou SM; Tsai YT; Lin J
    J Orthop Res; 2005 Jul; 23(4):788-94. PubMed ID: 16022991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the bending performance of solid and cannulated spinal pedicle screws using finite element analyses and biomechanical tests.
    Shih KS; Hsu CC; Hou SM; Yu SC; Liaw CK
    Med Eng Phys; 2015 Sep; 37(9):879-84. PubMed ID: 26208430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Biomechanical study and digital modeling of traction resistance in posterior thoracic implants].
    Gayet LE; Hamcha H; Charbonneau A; Texereau J; Bertheau D; Bellicaud D; Pries P
    Rev Chir Orthop Reparatrice Appar Mot; 2001 Sep; 87(5):459-68. PubMed ID: 11547233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of pullout strength in different designs of pedicle screws for osteoporotic bone quality using finite element analysis.
    Yang SC; Liu PH; Tu YK
    Acta Bioeng Biomech; 2019; 21(3):57-66. PubMed ID: 31798015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of pedicle screw pullout strength based on various screw designs and bone densities-an ex vivo biomechanical study.
    Kim YY; Choi WS; Rhyu KW
    Spine J; 2012 Feb; 12(2):164-8. PubMed ID: 22336467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison study of the pullout strength of conventional spinal pedicle screws and a novel design in full and backed-out insertions using mechanical tests.
    Amaritsakul Y; Chao CK; Lin J
    Proc Inst Mech Eng H; 2014 Mar; 228(3):250-7. PubMed ID: 24496916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical bone trajectory for lumbar pedicle screws.
    Santoni BG; Hynes RA; McGilvray KC; Rodriguez-Canessa G; Lyons AS; Henson MA; Womack WJ; Puttlitz CM
    Spine J; 2009 May; 9(5):366-73. PubMed ID: 18790684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical performance of cylindrical and dual-core pedicle screws after repeated insertion.
    Defino HL; Rosa RC; Silva P; Shimano AC; Albuquerque de Paula FJ; Volpon JB
    Spine (Phila Pa 1976); 2012 Jun; 37(14):1187-91. PubMed ID: 22880208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pedicle screw insertion angle and pullout strength: comparison of 2 proposed strategies.
    Inceoğlu S; Montgomery WH; St Clair S; McLain RF
    J Neurosurg Spine; 2011 May; 14(5):670-6. PubMed ID: 21388287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screw design alters the effects of stress relaxation on pullout.
    Inceoğlu S; Kilinçer C; McLain RF
    Biomed Mater Eng; 2008; 18(2):53-60. PubMed ID: 18408256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of immediate and fatigue strength of a dual-threaded pedicle screw in cadaveric spines.
    Brasiliense LB; Lazaro BC; Reyes PM; Newcomb AG; Turner JL; Crandall DG; Crawford NR
    Spine J; 2013 Aug; 13(8):947-56. PubMed ID: 23602373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.