These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19945789)

  • 1. Heterogeneous kinetics of the reduction of chromium (VI) by elemental iron.
    Fiúza A; Silva A; Carvalho G; de la Fuente AV; Delerue-Matos C
    J Hazard Mater; 2010 Mar; 175(1-3):1042-7. PubMed ID: 19945789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of hexavalent chromium reduction by scrap iron.
    Gheju M; Iovi A
    J Hazard Mater; 2006 Jul; 135(1-3):66-73. PubMed ID: 16386842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes.
    Hu J; Chen C; Zhu X; Wang X
    J Hazard Mater; 2009 Mar; 162(2-3):1542-50. PubMed ID: 18650001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hexavalent chromium removal from near natural water by copper-iron bimetallic particles.
    Hu CY; Lo SL; Liou YH; Hsu YW; Shih K; Lin CJ
    Water Res; 2010 May; 44(10):3101-8. PubMed ID: 20350740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of electrokinetic remediation of hyper-Cr(VI) contaminated clay by zero-valent iron.
    Weng CH; Lin YT; Lin TY; Kao CM
    J Hazard Mater; 2007 Oct; 149(2):292-302. PubMed ID: 17485164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron.
    Rivero-Huguet M; Marshall WD
    Chemosphere; 2009 Aug; 76(9):1240-8. PubMed ID: 19559460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cr(VI) reduction in wastewater using a bimetallic galvanic reactor.
    Lugo-Lugo V; Barrera-Díaz C; Bilyeu B; Balderas-Hernández P; Ureña-Nuñez F; Sánchez-Mendieta V
    J Hazard Mater; 2010 Apr; 176(1-3):418-25. PubMed ID: 20031318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron.
    Shi LN; Zhang X; Chen ZL
    Water Res; 2011 Jan; 45(2):886-92. PubMed ID: 20950833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles.
    Cao J; Zhang WX
    J Hazard Mater; 2006 May; 132(2-3):213-9. PubMed ID: 16621279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into the phenomenology of the Cr(VI) reduction by metallic iron using an electron probe microanalyzer.
    Vega A; Fiuza A; Guimarães F
    Langmuir; 2010 Jul; 26(14):11980-6. PubMed ID: 20578753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron.
    Oh YJ; Song H; Shin WS; Choi SJ; Kim YH
    Chemosphere; 2007 Jan; 66(5):858-65. PubMed ID: 16872667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4.
    Epolito WJ; Yang H; Bottomley LA; Pavlostathis SG
    J Hazard Mater; 2008 Dec; 160(2-3):594-600. PubMed ID: 18436373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of complex reagents on removal of chromium(VI) by zero-valent iron.
    Zhou H; He Y; Lan Y; Mao J; Chen S
    Chemosphere; 2008 Jun; 72(6):870-4. PubMed ID: 18486963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous Cr(VI) reduction by electrodeposited zero-valent iron at neutral pH: acceleration by organic matters.
    Liu J; Wang C; Shi J; Liu H; Tong Y
    J Hazard Mater; 2009 Apr; 163(1):370-5. PubMed ID: 18687521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of waste iron metal for removal of Cr(VI) from water.
    Lee T; Lim H; Lee Y; Park JW
    Chemosphere; 2003 Nov; 53(5):479-85. PubMed ID: 12948531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical reduction of nitrate by nanosized iron: kinetics and pathways.
    Yang GC; Lee HL
    Water Res; 2005 Mar; 39(5):884-94. PubMed ID: 15743635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 2: Effect of scrap iron shape and size.
    Gheju M; Balcu I
    J Hazard Mater; 2010 Oct; 182(1-3):484-93. PubMed ID: 20638785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remarkable influence of surface composition and structure of oxidized iron layer on orange I decomposition mechanisms.
    Atenas GM; Mielczarski E; Mielczarski JA
    J Colloid Interface Sci; 2005 Sep; 289(1):171-83. PubMed ID: 15922352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and regeneration studies of photocatalytic magnetic separable beads for chromium (VI) reduction under sunlight.
    Idris A; Hassan N; Rashid R; Ngomsik AF
    J Hazard Mater; 2011 Feb; 186(1):629-35. PubMed ID: 21168966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.