These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 19946569)

  • 1. SIMD Optimization of Linear Expressions for Programmable Graphics Hardware.
    Bajaj C; Ihm I; Min J; Oh J
    Comput Graph Forum; 2004 Dec; 23(4):697-714. PubMed ID: 19946569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance image reconstruction in fluorescence tomography on desktop computers and graphics hardware.
    Freiberger M; Egger H; Liebmann M; Scharfetter H
    Biomed Opt Express; 2011 Nov; 2(11):3207-22. PubMed ID: 22076279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMF-mGPU: non-negative matrix factorization on multi-GPU systems.
    Mejía-Roa E; Tabas-Madrid D; Setoain J; García C; Tirado F; Pascual-Montano A
    BMC Bioinformatics; 2015 Feb; 16():43. PubMed ID: 25887585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallelisation of equation-based simulation programs on heterogeneous computing systems.
    Nikolić DD
    PeerJ Comput Sci; 2018; 4():e160. PubMed ID: 33816813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TETRAHEDRAL DOMAINS.
    Fu Z; Kirby RM; Whitaker RT
    SIAM J Sci Comput; 2013; 35(5):c473-c494. PubMed ID: 25221418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPU computing with Kaczmarz's and other iterative algorithms for linear systems.
    Elble JM; Sahinidis NV; Vouzis P
    Parallel Comput; 2010 Jun; 36(5-6):215-231. PubMed ID: 20526446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resource-Efficient Use of Modern Processor Architectures For Numerically Solving Cardiac Ionic Cell Models.
    Hustad KG; Cai X
    Front Physiol; 2022; 13():904648. PubMed ID: 35923230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerating molecular modeling applications with graphics processors.
    Stone JE; Phillips JC; Freddolino PL; Hardy DJ; Trabuco LG; Schulten K
    J Comput Chem; 2007 Dec; 28(16):2618-40. PubMed ID: 17894371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment.
    Manavski SA; Valle G
    BMC Bioinformatics; 2008 Mar; 9 Suppl 2(Suppl 2):S10. PubMed ID: 18387198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TRIANGULATED SURFACES.
    Fu Z; Jeong WK; Pan Y; Kirby RM; Whitaker RT
    SIAM J Sci Comput; 2011; 33(5):2468-2488. PubMed ID: 22641200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast Sparse Level Sets on Graphics Hardware.
    Jalba AC; van der Laan WJ; Roerdink JB
    IEEE Trans Vis Comput Graph; 2013 Jan; 19(1):30-44. PubMed ID: 22392718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer generated holography using parallel commodity graphics hardware.
    Ahrenberg L; Benzie P; Magnor M; Watson J
    Opt Express; 2006 Aug; 14(17):7636-41. PubMed ID: 19529132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the energy efficiency of sparse linear system solvers on multicore and manycore systems.
    Anzt H; Quintana-Ortí ES
    Philos Trans A Math Phys Eng Sci; 2014 Jun; 372(2018):20130279. PubMed ID: 24842036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generic and scalable pipeline for GPU tetrahedral grid rendering.
    Georgii J; Westermann R
    IEEE Trans Vis Comput Graph; 2006; 12(5):1345-52. PubMed ID: 17080871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Challenges of Writing Portable, Correct and High Performance Libraries for GPUs.
    Leeser M; Yablonski D; Brooks D; King LS
    Comput Archit News; 2011 Sep; 39(4):2-7. PubMed ID: 23807820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS; Xia J; Muyan-Ozcelik P; Owens JD
    Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerating reaction-diffusion simulations with general-purpose graphics processing units.
    Vigelius M; Lane A; Meyer B
    Bioinformatics; 2011 Jan; 27(2):288-90. PubMed ID: 21062761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computing the sparse matrix vector product using block-based kernels without zero padding on processors with AVX-512 instructions.
    Bramas B; Kus P
    PeerJ Comput Sci; 2018; 4():e151. PubMed ID: 33816805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-GPU implementation of a VMAT treatment plan optimization algorithm.
    Tian Z; Peng F; Folkerts M; Tan J; Jia X; Jiang SB
    Med Phys; 2015 Jun; 42(6):2841-52. PubMed ID: 26127037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient numerical approaches with accelerated graphics processing unit (GPU) computations for Poisson problems and Cahn-Hilliard equations.
    Orizaga S; Fabien M; Millard M
    AIMS Math; 2024; 9(10):27471-27496. PubMed ID: 39391269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.