These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 19946677)

  • 1. Engineered synapse model cell: genetic construction and chemical evaluation for reproducible high-throughput analysis.
    Migita S; Tateishi A; Keinänen K; Haruyama T
    Anal Bioanal Chem; 2010 Feb; 396(3):1153-7. PubMed ID: 19946677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-synapse model cell for synaptic glutamate receptor (GluR)-based biosensing: strategy and engineering to maximize ligand-gated ion-flux achieving high signal-to-noise ratio.
    Tateishi A; Coleman SK; Migita S; Keinänen K; Haruyama T
    Sensors (Basel); 2012; 12(1):1035-41. PubMed ID: 22368509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A semisynthetic fluorescent sensor protein for glutamate.
    Brun MA; Tan KT; Griss R; Kielkowska A; Reymond L; Johnsson K
    J Am Chem Soc; 2012 May; 134(18):7676-8. PubMed ID: 22533301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate synapse in developing brain: an integrative perspective beyond the silent state.
    Hanse E; Taira T; Lauri S; Groc L
    Trends Neurosci; 2009 Oct; 32(10):532-7. PubMed ID: 19733923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate transporters bring competition to the synapse.
    Huang YH; Bergles DE
    Curr Opin Neurobiol; 2004 Jun; 14(3):346-52. PubMed ID: 15194115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biosensing system based on extracellular potential recording of ligand-gated ion channel function overexpressed in insect cells.
    Haruyama T; Bongsebandhu-Phubhakdi S; Nakamura I; Mottershead D; Keinänen K; Kobatake E; Aizawa M
    Anal Chem; 2003 Feb; 75(4):918-21. PubMed ID: 12622384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput development of a hybrid-type fluorescent glutamate sensor for analysis of synaptic transmission.
    Takikawa K; Asanuma D; Namiki S; Sakamoto H; Ariyoshi T; Kimpara N; Hirose K
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13439-43. PubMed ID: 25297726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous glutamate release controls NT-3-dependent development of hippocampal calbindin-D(28k) phenotype through activation of sodium channels ex vivo.
    Pieraut S; Boukhaddaoui H; Scamps F; Dayanithi G; Sieso V; Valmier J
    Eur J Neurosci; 2007 May; 25(9):2629-39. PubMed ID: 17561837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple routes for glutamate receptor trafficking: surface diffusion and membrane traffic cooperate to bring receptors to synapses.
    Cognet L; Groc L; Lounis B; Choquet D
    Sci STKE; 2006 Mar; 2006(327):pe13. PubMed ID: 16552090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental regulation of glutamate receptor field size by nonvesicular glutamate release.
    Featherstone DE; Rushton E; Broadie K
    Nat Neurosci; 2002 Feb; 5(2):141-6. PubMed ID: 11753421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-cell-reporter-gene-based biosensing systems on a compact disk microfluidics platform.
    Rothert A; Deo SK; Millner L; Puckett LG; Madou MJ; Daunert S
    Anal Biochem; 2005 Jul; 342(1):11-9. PubMed ID: 15958175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of postsynaptic glutamate receptor targeting.
    Chen L; Tracy T; Nam CI
    Curr Opin Neurobiol; 2007 Feb; 17(1):53-8. PubMed ID: 17161597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins.
    Elias GM; Nicoll RA
    Trends Cell Biol; 2007 Jul; 17(7):343-52. PubMed ID: 17644382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The function of glutamatergic synapses is not perturbed by severe knockdown of 4.1N and 4.1G expression.
    Wozny C; Breustedt J; Wolk F; Varoqueaux F; Boretius S; Zivkovic AR; Neeb A; Frahm J; Schmitz D; Brose N; Ivanovic A
    J Cell Sci; 2009 Mar; 122(Pt 5):735-44. PubMed ID: 19225127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABAergic inhibition regulates developmental synapse elimination in the cerebellum.
    Nakayama H; Miyazaki T; Kitamura K; Hashimoto K; Yanagawa Y; Obata K; Sakimura K; Watanabe M; Kano M
    Neuron; 2012 Apr; 74(2):384-96. PubMed ID: 22542190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of GFP-tagged neuronal glutamate transporters in cerebellar Purkinje neurons.
    Meera P; Dodson PD; Karakossian MH; Otis TS
    Neuropharmacology; 2005 Nov; 49(6):883-9. PubMed ID: 16212990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of sensory input to the spinal cord by presynaptic ionotropic glutamate receptors.
    Rustioni A
    Arch Ital Biol; 2005 May; 143(2):103-12. PubMed ID: 16106991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic development: insights from Drosophila.
    Collins CA; DiAntonio A
    Curr Opin Neurobiol; 2007 Feb; 17(1):35-42. PubMed ID: 17229568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfection of cells attached to selected cell based biosensor surfaces.
    O'Connell DJ; Molinar AJ; Tavares AL; Mathine DL; Runyan RB; Bahl JJ
    Life Sci; 2007 Mar; 80(15):1395-402. PubMed ID: 17261315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses.
    Budreck EC; Scheiffele P
    Eur J Neurosci; 2007 Oct; 26(7):1738-48. PubMed ID: 17897391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.