These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19947599)

  • 1. Physicochemical stability of maize germ oil body emulsions as influenced by oil body surface-xanthan gum interactions.
    Nikiforidis CV; Kiosseoglou V
    J Agric Food Chem; 2010 Jan; 58(1):527-32. PubMed ID: 19947599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous extraction of oil bodies from maize germ (Zea mays) and characterization of the resulting natural oil-in-water emulsion.
    Nikiforidis CV; Kiosseoglou V
    J Agric Food Chem; 2009 Jun; 57(12):5591-6. PubMed ID: 19469559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle tracking using confocal microscopy to probe the microrheology in a phase-separating emulsion containing nonadsorbing polysaccharide.
    Moschakis T; Murray BS; Dickinson E
    Langmuir; 2006 May; 22(10):4710-9. PubMed ID: 16649786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of polysaccharides on the rate of coalescence in oil-in-water emulsions formed with highly hydrolyzed whey proteins.
    Ye A; Hemar Y; Singh H
    J Agric Food Chem; 2004 Aug; 52(17):5491-8. PubMed ID: 15315390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of acidic egg white protein emulsions containing xanthan gum.
    Drakos A; Kiosseoglou V
    J Agric Food Chem; 2006 Dec; 54(26):10164-9. PubMed ID: 17177555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheological investigations on the creaming of depletion-flocculated emulsions.
    Aben S; Holtze C; Tadros T; Schurtenberger P
    Langmuir; 2012 May; 28(21):7967-75. PubMed ID: 22554128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of recovery methods on the oxidative and physical stability of oil body emulsions.
    Karkani OA; Nenadis N; Nikiforidis CV; Kiosseoglou V
    Food Chem; 2013 Aug; 139(1-4):640-8. PubMed ID: 23561156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of model beverage cloud emulsions using protein-polysaccharide electrostatic complexes formed at the oil-water interface.
    Harnsilawat T; Pongsawatmanit R; McClements DJ
    J Agric Food Chem; 2006 Jul; 54(15):5540-7. PubMed ID: 16848543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principles of emulsion stabilization with special reference to polymeric surfactants.
    Tadros T
    J Cosmet Sci; 2006; 57(2):153-69. PubMed ID: 16688378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of pH and ionic strength on formation and stability of emulsions containing oil droplets coated by beta-lactoglobulin-alginate interfaces.
    Harnsilawat T; Pongsawatmanit R; McClements DJ
    Biomacromolecules; 2006 Jun; 7(6):2052-8. PubMed ID: 16768433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation behaviour and stability of maize germ oil body suspension.
    Sukhotu R; Shi X; Hu Q; Nishinari K; Fang Y; Guo S
    Food Chem; 2014 Dec; 164():1-6. PubMed ID: 24996296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of environmental stresses on stability of O/W emulsions containing cationic droplets stabilized by SDS-fish gelatin membranes.
    Surh J; Gu YS; Decker EA; McClements DJ
    J Agric Food Chem; 2005 May; 53(10):4236-44. PubMed ID: 15884866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of xanthan-locust bean gum mixtures on the physicochemical properties and oxidative stability of whey protein stabilised oil-in-water emulsions.
    Khouryieh H; Puli G; Williams K; Aramouni F
    Food Chem; 2015 Jan; 167():340-8. PubMed ID: 25148996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of electrostatic interactions on formation and stability of emulsions containing oil droplets coated by beta-lactoglobulin-pectin complexes.
    Guzey D; McClements DJ
    J Agric Food Chem; 2007 Jan; 55(2):475-85. PubMed ID: 17227082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of gum Arabic, egg white protein, and their mixtures at the oil-water interface in limonene oil-in-water emulsions.
    Padala SR; Williams PA; Phillips GO
    J Agric Food Chem; 2009 Jun; 57(11):4964-73. PubMed ID: 19422219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production and characterization of O/W emulsions containing cationic droplets stabilized by lecithin-chitosan membranes.
    Ogawa S; Decker EA; McClements DJ
    J Agric Food Chem; 2003 Apr; 51(9):2806-12. PubMed ID: 12696977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting the stability of O/W emulsion in BSA solution: stabilization by electrically neutral protein at high ionic strength.
    Rangsansarid J; Fukada K
    J Colloid Interface Sci; 2007 Dec; 316(2):779-86. PubMed ID: 17897667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flocculation and coalescence of droplets in oil-in-water emulsions formed with highly hydrolysed whey proteins as influenced by starch.
    Ye A; Hemar Y; Singh H
    Colloids Surf B Biointerfaces; 2004 Oct; 38(1-2):1-9. PubMed ID: 15465297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.