These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 19947690)
1. Inquiry into thermodynamic behavior of hard sphere plus repulsive barrier of finite height. Zhou S; Solana JR J Chem Phys; 2009 Nov; 131(20):204503. PubMed ID: 19947690 [TBL] [Abstract][Full Text] [Related]
2. How to make thermodynamic perturbation theory to be suitable for low temperature? Zhou S J Chem Phys; 2009 Feb; 130(5):054103. PubMed ID: 19206954 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive investigation about the second order term of thermodynamic perturbation expansion. Zhou S; Solana JR J Chem Phys; 2009 Oct; 131(13):134106. PubMed ID: 19814542 [TBL] [Abstract][Full Text] [Related]
4. Low temperature behavior of thermodynamic perturbation theory. Zhou S; Solana JR Phys Chem Chem Phys; 2009 Dec; 11(48):11528-37. PubMed ID: 20024425 [TBL] [Abstract][Full Text] [Related]
5. Performance evaluation of third-order thermodynamic perturbation theory and comparison with existing liquid state theories. Zhou S J Phys Chem B; 2007 Sep; 111(36):10736-44. PubMed ID: 17713938 [TBL] [Abstract][Full Text] [Related]
6. Theoretical investigation about the possible consequence of artificial discontinuity in pair potential function on overall phase behavior. Zhou S J Phys Chem B; 2009 Jun; 113(25):8635-45. PubMed ID: 19480419 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamics and phase behavior of a triangle-well model and density-dependent variety. Zhou S J Chem Phys; 2009 Jan; 130(1):014502. PubMed ID: 19140617 [TBL] [Abstract][Full Text] [Related]
8. Structural properties of a model system with effective interparticle interaction potential applicable in modeling of complex fluids. Zhou S; Jamnik A J Phys Chem B; 2008 Nov; 112(44):13862-72. PubMed ID: 18842024 [TBL] [Abstract][Full Text] [Related]
9. Local structures of fluid with discrete spherical potential: Theory and grand canonical ensemble Monte Carlo simulation. Zhou S; Lajovic A; Jamnik A J Chem Phys; 2008 Sep; 129(12):124503. PubMed ID: 19045032 [TBL] [Abstract][Full Text] [Related]
11. New free energy density functional and application to core-softened fluid. Zhou S J Chem Phys; 2010 May; 132(19):194112. PubMed ID: 20499956 [TBL] [Abstract][Full Text] [Related]
12. How to extend hard sphere density functional approximation to nonuniform nonhard sphere fluids: applicable to both subcritical and supercritical temperature regions. Zhou S J Chem Phys; 2006 Apr; 124(14):144501. PubMed ID: 16626208 [TBL] [Abstract][Full Text] [Related]
13. Phase behavior of attractive and repulsive ramp fluids: integral equation and computer simulation studies. Lomba E; Almarza NG; Martín C; McBride C J Chem Phys; 2007 Jun; 126(24):244510. PubMed ID: 17614567 [TBL] [Abstract][Full Text] [Related]
14. Solid phase thermodynamic perturbation theory: test and application to multiple solid phases. Zhou S J Chem Phys; 2007 Aug; 127(8):084512. PubMed ID: 17764274 [TBL] [Abstract][Full Text] [Related]
16. A global investigation of phase equilibria using the perturbed-chain statistical-associating-fluid-theory approach. Yelash L; Müller M; Paul W; Binder K J Chem Phys; 2005 Jul; 123(1):014908. PubMed ID: 16035870 [TBL] [Abstract][Full Text] [Related]
17. Is perturbation DFT approach applicable to purely repulsive fluids? Zhou S; Jamnik A Phys Chem Chem Phys; 2006 Sep; 8(34):4009-17. PubMed ID: 17028691 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamic properties of model solids with short-ranged potentials from Monte Carlo simulations and perturbation theory. Díez A; Largo J; Solana JR J Phys Chem B; 2007 Aug; 111(34):10194-201. PubMed ID: 17683133 [TBL] [Abstract][Full Text] [Related]
19. Theoretical prediction of multiple fluid-fluid transitions in monocomponent fluids. Cervantes LA; Benavides AL; del Río F J Chem Phys; 2007 Feb; 126(8):084507. PubMed ID: 17343458 [TBL] [Abstract][Full Text] [Related]
20. Fifth-order thermodynamic perturbation theory of uniform and nonuniform fluids. Zhou S Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041110. PubMed ID: 18517581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]