These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 19947747)

  • 1. Thickness-induced resonance-based complex permittivity measurement technique for barium strontium titanate ceramics at microwave frequency.
    Xia S; Xu Z; Wei X
    Rev Sci Instrum; 2009 Nov; 80(11):114703. PubMed ID: 19947747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid materials.
    Hasar UC
    Rev Sci Instrum; 2009 May; 80(5):056103. PubMed ID: 19485540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linearity and temperature dependence of large-area processed high-q barium strontium titanate thin-film varactors.
    Subramanyam G; Patterson M; Leedy K; Neidhard R; Varanasi C; Zhang C; Steinhauer G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jul; 57(7):1692-5. PubMed ID: 20639162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New ceramic EPR resonators with high dielectric permittivity.
    Golovina I; Geifman I; Belous A
    J Magn Reson; 2008 Nov; 195(1):52-9. PubMed ID: 18815061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanofibers of barium strontium titanate (BST) by sol-gel processing and electrospinning.
    Maensiri S; Nuansing W; Klinkaewnarong J; Laokul P; Khemprasit J
    J Colloid Interface Sci; 2006 May; 297(2):578-83. PubMed ID: 16332372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size effect of barium titanate and computer-aided design of multilayered ceramic capacitors.
    Tsurumi T; Hoshina T; Takeda H; Mizuno Y; Chazono H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1513-22. PubMed ID: 19686965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion properties of point defects in barium strontium titanate thin films.
    Morito K; Suzuki T; Kishi H; Sakaguchi I; Ohashi N; Haneda H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2567-73. PubMed ID: 18276556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A calibration-independent method for accurate complex permittivity determination of liquid materials.
    Hasar UC
    Rev Sci Instrum; 2008 Aug; 79(8):086114. PubMed ID: 19044395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact pulse forming line using barium titanate ceramic material.
    Kumar Sharma S; Deb P; Shukla R; Prabaharan T; Shyam A
    Rev Sci Instrum; 2011 Nov; 82(11):115102. PubMed ID: 22129008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DC bias-dependent shift of the resonance frequencies in BST thin film membranes.
    Noeth A; Yamada T; Sherman VO; Muralt P; Tagantsev AK; Setter N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2487-92. PubMed ID: 18276543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband method for precise microwave spectroscopy of superconducting thin films near the critical temperature.
    Kitano H; Ohashi T; Maeda A
    Rev Sci Instrum; 2008 Jul; 79(7):074701. PubMed ID: 18681723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric characteristics of barium strontium titanate films prepared by aerosol deposition on a Cu substrate.
    Oh S; Park JH; Akedo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):421-4. PubMed ID: 19411201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of BST film microwave tunable devices based on (100) and (111) MgO substrates.
    Noda M; Yamada T; Seki K; Kamo T; Yamashita K; Funakubo H; Okuyama M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Oct; 57(10):2221-7. PubMed ID: 20889408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cavity resonator for dielectric measurements of high-ε, low loss materials, demonstrated with barium strontium zirconium titanate ceramics.
    Marksteiner QR; Treiman MB; Chen CF; Haynes WB; Reiten MT; Dalmas D; Pulliam E
    Rev Sci Instrum; 2017 Jun; 88(6):064704. PubMed ID: 28667944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of dielectric permittivity of perovskite-type artificial superlattices.
    Kinbara H; Harigai T; Kakemoto H; Wada S; Tsurumi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2541-7. PubMed ID: 18276552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell.
    Yan L; Wang J; Han X; Ren Y; Liu Q; Li F
    Nanotechnology; 2010 Mar; 21(9):095708. PubMed ID: 20139492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Barium-Strontium Titanate/Porous Glass Structures for Microwave Applications.
    Tumarkin A; Tyurnina N; Tyurnina Z; Mukhin N; Sinelshchikova O; Gagarin A; Sviridov S; Drozdovsky A; Sapego E; Mylnikov I
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33321860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Traceable measurement and imaging of the complex permittivity of a multiphase mineral specimen at micron scales using a microwave microscope.
    Gregory AP; Blackburn JF; Hodgetts TE; Clarke RN; Lees K; Plint S; Dimitrakis GA
    Ultramicroscopy; 2017 Jan; 172():65-74. PubMed ID: 27865149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-difference electrical impedance tomography (fdEIT): algorithm development and feasibility study.
    Seo JK; Lee J; Kim SW; Zribi H; Woo EJ
    Physiol Meas; 2008 Aug; 29(8):929-44. PubMed ID: 18603667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave method for reference-plane-invariant and thickness-independent permittivity determination of liquid materials.
    Hasar UC; Kaya Y; Bute M; Barroso JJ; Ertugrul M
    Rev Sci Instrum; 2014 Jan; 85(1):014705. PubMed ID: 24517796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.