These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 19947777)

  • 1. Estimation of metabolic pathway systems from different data sources.
    Voit EO; Goel G; Chou IC; Fonseca LL
    IET Syst Biol; 2009 Nov; 3(6):513-22. PubMed ID: 19947777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges in lin-log modelling of glycolysis in Lactococcus lactis.
    del Rosario RC; Mendoza E; Voit EO
    IET Syst Biol; 2008 May; 2(3):136-49. PubMed ID: 18537454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of phosphate in the central metabolism of two lactic acid bacteria--a comparative systems biology approach.
    Levering J; Musters MW; Bekker M; Bellomo D; Fiedler T; de Vos WM; Hugenholtz J; Kreikemeyer B; Kummer U; Teusink B
    FEBS J; 2012 Apr; 279(7):1274-90. PubMed ID: 22325620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of metabolic flow of xylose in Lactococcus lactis.
    Ohara H; Owaki M; Sonomoto K
    J Biosci Bioeng; 2007 Jan; 103(1):92-4. PubMed ID: 17298906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into the complex regulation of the glycolytic pathway in Lactococcus lactis. I. Construction and diagnosis of a comprehensive dynamic model.
    Dolatshahi S; Fonseca LL; Voit EO
    Mol Biosyst; 2016 Jan; 12(1):23-36. PubMed ID: 26609637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The metabolic pH response in Lactococcus lactis: an integrative experimental and modelling approach.
    Andersen AZ; Carvalho AL; Neves AR; Santos H; Kummer U; Olsen LF
    Comput Biol Chem; 2009 Feb; 33(1):71-83. PubMed ID: 18829387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameter estimation in modulated, unbranched reaction chains within biochemical systems.
    Lall R; Voit EO
    Comput Biol Chem; 2005 Oct; 29(5):309-18. PubMed ID: 16213792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental determination of control of glycolysis in Lactococcus lactis.
    Koebmann BJ; Andersen HW; Solem C; Jensen PR
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):237-48. PubMed ID: 12369190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study.
    Voit EO; Almeida J; Marino S; Lall R; Goel G; Neves AR; Santos H
    Syst Biol (Stevenage); 2006 Jul; 153(4):286-98. PubMed ID: 16986630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative estimation of channeling from early glycolytic intermediates to CO in intact Escherichia coli.
    Shearer G; Lee JC; Koo JA; Kohl DH
    FEBS J; 2005 Jul; 272(13):3260-9. PubMed ID: 15978033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of dynamic flux profiles from metabolic time series data.
    Chou IC; Voit EO
    BMC Syst Biol; 2012 Jul; 6():84. PubMed ID: 22776140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time dependent responses of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out experiments.
    Hoefnagel MH; van der Burgt A; Martens DE; Hugenholtz J; Snoep JL
    Mol Biol Rep; 2002; 29(1-2):157-61. PubMed ID: 12241048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A data integration approach for cell cycle analysis oriented to model simulation in systems biology.
    Alfieri R; Merelli I; Mosca E; Milanesi L
    BMC Syst Biol; 2007 Aug; 1():35. PubMed ID: 17678529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles.
    Kitayama T; Kinoshita A; Sugimoto M; Nakayama Y; Tomita M
    Theor Biol Med Model; 2006 Jul; 3():24. PubMed ID: 16846504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
    Mercade M; Cocaign-Bousquet M; Loubière P
    J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overview on sugar metabolism and its control in Lactococcus lactis - the input from in vivo NMR.
    Neves AR; Pool WA; Kok J; Kuipers OP; Santos H
    FEMS Microbiol Rev; 2005 Aug; 29(3):531-54. PubMed ID: 15939503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal sampling time selection for parameter estimation in dynamic pathway modeling.
    Kutalik Z; Cho KH; Wolkenhauer O
    Biosystems; 2004 Jul; 75(1-3):43-55. PubMed ID: 15245803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic modeling and sensitivity analysis of xylose metabolism in Lactococcus lactis IO-1.
    Oshiro M; Shinto H; Tashiro Y; Miwa N; Sekiguchi T; Okamoto M; Ishizaki A; Sonomoto K
    J Biosci Bioeng; 2009 Nov; 108(5):376-84. PubMed ID: 19804860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights into the complex regulation of the glycolytic pathway in Lactococcus lactis. II. Inference of the precisely timed control system regulating glycolysis.
    Dolatshahi S; Fonseca LL; Voit EO
    Mol Biosyst; 2016 Jan; 12(1):37-47. PubMed ID: 26609780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental validation of metabolic pathway modeling.
    Moreno-Sánchez R; Encalada R; Marín-Hernández A; Saavedra E
    FEBS J; 2008 Jul; 275(13):3454-69. PubMed ID: 18510554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.