These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19948343)

  • 1. A study of effective diffusivity in porous scaffold by Brownian dynamics simulation.
    Zhou H; Chen SB; Peng J; Wang CH
    J Colloid Interface Sci; 2010 Feb; 342(2):620-8. PubMed ID: 19948343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion in three-dimensionally ordered scaffolds with inverted colloidal crystal geometry.
    Shanbhag S; Woo Lee J; Kotov N
    Biomaterials; 2005 Sep; 26(27):5581-5. PubMed ID: 15860215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the effective diffusivity of a freeform fabricated scaffold using computational simulation.
    Woo Jung J; Yi HG; Kang TY; Yong WJ; Jin S; Yun WS; Cho DW
    J Biomech Eng; 2013 Aug; 135(8):84501. PubMed ID: 23719774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering.
    Wu L; Ding J
    J Biomed Mater Res A; 2005 Dec; 75(4):767-77. PubMed ID: 16121386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization.
    Han J; Zhou Z; Yin R; Yang D; Nie J
    Int J Biol Macromol; 2010 Mar; 46(2):199-205. PubMed ID: 19941890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of resorbable porous tubular copolyester scaffolds for use in nerve regeneration.
    Plikk P; MÃ¥lberg S; Albertsson AC
    Biomacromolecules; 2009 May; 10(5):1259-64. PubMed ID: 19331401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival and relaxation time, pore size distribution moments, and viscous permeability in random unidirectional fiber structures.
    Tomadakis MM; Robertson TJ
    J Chem Phys; 2005 Mar; 122(9):094711. PubMed ID: 15836166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds.
    Tan L; Gong M; Zheng F; Zhang B; Yang K
    Biomed Mater; 2009 Feb; 4(1):015016. PubMed ID: 19141874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
    Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA
    Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico prediction of the cell proliferation in porous scaffold using model of effective pore.
    Makhaniok A; Haranava Y; Goranov V; Panseri S; Semerikhina S; Russo A; Marcacci M; Dediu V
    Biosystems; 2013 Dec; 114(3):227-37. PubMed ID: 24141144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Primary study on histocompatibility of three kinds of collagen-chitosan porous scaffolds].
    Hu X; Han C; Shi H; Ma L; Gao C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Oct; 19(10):826-30. PubMed ID: 16274135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of angiogenesis and cell differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling approach.
    Sandino C; Checa S; Prendergast PJ; Lacroix D
    Biomaterials; 2010 Mar; 31(8):2446-52. PubMed ID: 19969348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fabrication of a novel cartilage acellular matrix scaffold for cartilage tissue engineering].
    Yang Q; Peng J; Lu S; Sun M; Huang J; Zhang L; Xu W; Zhao B; Sui X; Yao J; Yuan M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Mar; 22(3):359-63. PubMed ID: 18396722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of scaffold architecture and pore size on smooth muscle cell growth.
    Lee M; Wu BM; Dunn JC
    J Biomed Mater Res A; 2008 Dec; 87(4):1010-6. PubMed ID: 18257081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing annulus fibrosus tissue formation in porous silk scaffolds.
    Chang G; Kim HJ; Vunjak-Novakovic G; Kaplan DL; Kandel R
    J Biomed Mater Res A; 2010 Jan; 92(1):43-51. PubMed ID: 19165797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of coronary artery smooth muscle cells with 3D porous polyurethane scaffolds.
    Grenier S; Sandig M; Holdsworth DW; Mequanint K
    J Biomed Mater Res A; 2009 May; 89(2):293-303. PubMed ID: 18431771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants.
    Li JP; de Wijn JR; van Blitterswijk CA; de Groot K
    J Biomed Mater Res A; 2010 Jan; 92(1):33-42. PubMed ID: 19165798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.