BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19948657)

  • 1. Temperature jump induced force generation in rabbit muscle fibres gets faster with shortening and shows a biphasic dependence on velocity.
    Ranatunga KW; Roots H; Offer GW
    J Physiol; 2010 Feb; 588(Pt 3):479-93. PubMed ID: 19948657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force generation examined by laser temperature-jumps in shortening and lengthening mammalian (rabbit psoas) muscle fibres.
    Ranatunga KW; Coupland ME; Pinniger GJ; Roots H; Offer GW
    J Physiol; 2007 Nov; 585(Pt 1):263-77. PubMed ID: 17916609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothermic force generation, temperature-jump experiments and effects of increased [MgADP] in rabbit psoas muscle fibres.
    Coupland ME; Pinniger GJ; Ranatunga KW
    J Physiol; 2005 Sep; 567(Pt 2):471-92. PubMed ID: 15975981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analysis of the temperature dependence of force, during steady shortening at different velocities, in (mammalian) fast muscle fibres.
    Roots H; Ranatunga KW
    J Muscle Res Cell Motil; 2008; 29(1):9-24. PubMed ID: 18523851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force generation induced by rapid temperature jumps in intact mammalian (rat) skeletal muscle fibres.
    Coupland ME; Ranatunga KW
    J Physiol; 2003 Apr; 548(Pt 2):439-49. PubMed ID: 12611915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The force-generation process in active muscle is strain sensitive and endothermic: a temperature-perturbation study.
    Ranatunga KW; Offer G
    J Exp Biol; 2017 Dec; 220(Pt 24):4733-4742. PubMed ID: 29084851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force and power generating mechanism(s) in active muscle as revealed from temperature perturbation studies.
    Ranatunga KW
    J Physiol; 2010 Oct; 588(Pt 19):3657-70. PubMed ID: 20660565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of force enhancement during and after lengthening of active muscle: a temperature dependence study.
    Roots H; Pinniger GJ; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2012 Oct; 33(5):313-25. PubMed ID: 22706970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An asymmetry in the phosphate dependence of tension transients induced by length perturbation in mammalian (rabbit psoas) muscle fibres.
    Ranatunga KW; Coupland ME; Mutungi G
    J Physiol; 2002 Aug; 542(Pt 3):899-910. PubMed ID: 12154187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of force recovery following length changes in active skinned single fibres from rabbit psoas muscle: analysis and modelling of the late recovery phase.
    Burton K; Simmons RM; Sleep J; Simmons RM; Burton K; Smith DA
    J Physiol; 2006 Jun; 573(Pt 2):305-28. PubMed ID: 16497718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothermic force generation in skinned cardiac muscle from rat.
    Ranatunga KW
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):489-96. PubMed ID: 10555067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tension responses to rapid (laser) temperature-jumps during twitch contractions in intact rat muscle fibres.
    Coupland ME; Pinniger GJ; Ranatunga KW
    J Muscle Res Cell Motil; 2005; 26(2-3):113-22. PubMed ID: 16001130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The endothermic ATP hydrolysis and crossbridge attachment steps drive the increase of force with temperature in isometric and shortening muscle.
    Offer G; Ranatunga KW
    J Physiol; 2015 Apr; 593(8):1997-2016. PubMed ID: 25564737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothermic force generation in fast and slow mammalian (rabbit) muscle fibers.
    Ranatunga KW
    Biophys J; 1996 Oct; 71(4):1905-13. PubMed ID: 8889165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of force rise time during isometric contraction of frog muscle fibres.
    Edman KA; Josephson RK
    J Physiol; 2007 May; 580(Pt.3):1007-19. PubMed ID: 17303645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The elementary force generation process probed by temperature and length perturbations in muscle fibres from the rabbit.
    Bershitsky SY; Tsaturyan AK
    J Physiol; 2002 May; 540(Pt 3):971-88. PubMed ID: 11986383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-bridge kinetics studied with staircase shortening in single fibres from frog skeletal muscle.
    Linari M; Lombardi V; Piazzesi G
    J Muscle Res Cell Motil; 1997 Feb; 18(1):91-101. PubMed ID: 9147997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle: force-induced reversal of the power stroke.
    Pinniger GJ; Ranatunga KW; Offer GW
    J Physiol; 2006 Jun; 573(Pt 3):627-43. PubMed ID: 16627571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular step(s) of force generation: temperature-perturbation experiments on muscle fibres.
    Ranatunga KW; Coupland ME
    Adv Exp Med Biol; 2003; 538():441-57; discussion 457. PubMed ID: 15098690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.