These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19948657)

  • 61. Effect of active shortening and stretching on the rate of force re-development in rabbit psoas muscle fibres.
    Ames SR; Joumaa V; Herzog W
    J Exp Biol; 2022 Nov; 225(22):. PubMed ID: 36268629
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mechanical transients of single toad stomach smooth muscle cells. Effects of lowering temperature and extracellular calcium.
    Yamakawa M; Harris DE; Fay FS; Warshaw DM
    J Gen Physiol; 1990 Apr; 95(4):697-715. PubMed ID: 2110967
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Laser diffraction studies of sarcomere dynamics during 'isometric' relaxation in isolated muscle fibres of the frog.
    Edman KA; Flitney FW
    J Physiol; 1982 Aug; 329():1-20. PubMed ID: 6982971
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sarcomere length dependence of the rate of tension redevelopment and submaximal tension in rat and rabbit skinned skeletal muscle fibres.
    McDonald KS; Wolff MR; Moss RL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):607-21. PubMed ID: 9218220
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Time course and strain dependence of ADP release during contraction of permeabilized skeletal muscle fibers.
    West TG; Hild G; Siththanandan VB; Webb MR; Corrie JE; Ferenczi MA
    Biophys J; 2009 Apr; 96(8):3281-94. PubMed ID: 19383472
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Storage and release of mechanical energy by contracting frog muscle fibres.
    Cavagna GA; Heglund NC; Harry JD; Mantovani M
    J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):689-708. PubMed ID: 7707236
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A new experimental model to study force depression: the Drosophila jump muscle.
    Koppes RA; Swank DM; Corr DT
    J Appl Physiol (1985); 2014 Jun; 116(12):1543-50. PubMed ID: 24790016
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effects of inorganic phosphate on endothermic force generation in muscle.
    Ranatunga KW
    Proc Biol Sci; 1999 Jul; 266(1426):1381-5. PubMed ID: 10445293
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effects of substituting uridine triphosphate for ATP on the crossbridge cycle of rabbit muscle.
    Seow CY; White HD; Ford LE
    J Physiol; 2001 Dec; 537(Pt 3):907-21. PubMed ID: 11744764
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of phosphate and ADP on shortening velocity during maximal and submaximal calcium activation of the thin filament in skeletal muscle fibers.
    Metzger JM
    Biophys J; 1996 Jan; 70(1):409-17. PubMed ID: 8770217
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Contribution of damped passive recoil to the measured shortening velocity of skinned rabbit and sheep muscle fibres.
    Seow CY; Ford LE
    J Muscle Res Cell Motil; 1992 Jun; 13(3):295-307. PubMed ID: 1527216
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The pCa-tension and force-velocity characteristics of skinned fibres isolated from fish fast and slow muscles.
    Altringham JD; Johnston IA
    J Physiol; 1982 Dec; 333():421-49. PubMed ID: 7182472
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A weakly coupled version of the Huxley crossbridge model can simulate energetics of amphibian and mammalian skeletal muscle.
    Barclay CJ
    J Muscle Res Cell Motil; 1999 Feb; 20(2):163-76. PubMed ID: 10412088
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A simple model with myofilament compliance predicts activation-dependent crossbridge kinetics in skinned skeletal fibers.
    Martyn DA; Chase PB; Regnier M; Gordon AM
    Biophys J; 2002 Dec; 83(6):3425-34. PubMed ID: 12496109
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Changes in the maximum speed of shortening of frog muscle fibres early in a tetanic contraction and during relaxation.
    Josephson RK; Edman KA
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):511-25. PubMed ID: 9518709
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Unloaded shortening after a quick release of a contracting, single fibre from crayfish slow muscle.
    Tameyasu T
    J Muscle Res Cell Motil; 1992 Dec; 13(6):619-29. PubMed ID: 1491070
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Temperature dependence of the crossbridge cycle during unloaded shortening and maximum isometric tetanus in frog skeletal muscle.
    Burchfield DM; Rall JA
    J Muscle Res Cell Motil; 1986 Aug; 7(4):320-6. PubMed ID: 3489733
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The efficiency of contraction in rabbit skeletal muscle fibres, determined from the rate of release of inorganic phosphate.
    He ZH; Chillingworth RK; Brune M; Corrie JE; Webb MR; Ferenczi MA
    J Physiol; 1999 Jun; 517 ( Pt 3)(Pt 3):839-54. PubMed ID: 10358123
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Birefringence changes associated with isometric contraction and rapid shortening steps in frog skeletal muscle fibres.
    Irving M
    J Physiol; 1993 Dec; 472():127-56. PubMed ID: 8145138
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Modulation by substrate concentration of maximal shortening velocity and isometric force in single myofibrils from frog and rabbit fast skeletal muscle.
    Tesi C; Colomo F; Nencini S; Piroddi N; Poggesi C
    J Physiol; 1999 May; 516 ( Pt 3)(Pt 3):847-53. PubMed ID: 10200430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.