These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 19948851)
1. Alanine scanning analyses of the three major loops in domain II of Bacillus thuringiensis mosquitocidal toxin Cry4Aa. Howlader MT; Kagawa Y; Miyakawa A; Yamamoto A; Taniguchi T; Hayakawa T; Sakai H Appl Environ Microbiol; 2010 Feb; 76(3):860-5. PubMed ID: 19948851 [TBL] [Abstract][Full Text] [Related]
2. Mutagenic analysis of putative domain II and surface residues in mosquitocidal Bacillus thuringiensis Cry19Aa toxin. Roh JY; Nair MS; Liu XS; Dean DH FEMS Microbiol Lett; 2009 Jun; 295(2):156-63. PubMed ID: 19456870 [TBL] [Abstract][Full Text] [Related]
4. Loop residues of the receptor binding domain of Bacillus thuringiensis Cry11Ba toxin are important for mosquitocidal activity. Likitvivatanavong S; Aimanova KG; Gill SS FEBS Lett; 2009 Jun; 583(12):2021-30. PubMed ID: 19450583 [TBL] [Abstract][Full Text] [Related]
5. Bacillus thuringiensis Cry4Aa insecticidal protein: functional importance of the intrinsic stability of the unique α4-α5 loop comprising the Pro-rich sequence. Imtong C; Kanchanawarin C; Katzenmeier G; Angsuthanasombat C Biochim Biophys Acta; 2014 Jun; 1844(6):1111-8. PubMed ID: 24632526 [TBL] [Abstract][Full Text] [Related]
6. Mutations at domain II, loop 3, of Bacillus thuringiensis CryIAa and CryIAb delta-endotoxins suggest loop 3 is involved in initial binding to lepidopteran midguts. Rajamohan F; Hussain SR; Cotrill JA; Gould F; Dean DH J Biol Chem; 1996 Oct; 271(41):25220-6. PubMed ID: 8810282 [TBL] [Abstract][Full Text] [Related]
7. Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. Boonserm P; Mo M; Angsuthanasombat C; Lescar J J Bacteriol; 2006 May; 188(9):3391-401. PubMed ID: 16621834 [TBL] [Abstract][Full Text] [Related]
8. Single-reversal charge in the β10-β11 receptor-binding loop of Bacillus thuringiensis Cry4Aa and Cry4Ba toxins reflects their different toxicity against Culex spp. larvae. Visitsattapongse S; Sakdee S; Leetacheewa S; Angsuthanasombat C Biochem Biophys Res Commun; 2014 Jul; 450(2):948-52. PubMed ID: 24971536 [TBL] [Abstract][Full Text] [Related]
9. Mutational analysis of the transmembrane α4-helix of Bacillus thuringiensis mosquito-larvicidal Cry4Aa toxin. Takahashi H; Asakura M; Ide T; Hayakawa T Curr Microbiol; 2024 Jan; 81(3):80. PubMed ID: 38281302 [TBL] [Abstract][Full Text] [Related]
10. Design and construction of a synthetic Bacillus thuringiensis Cry4Aa gene: hyperexpression in Escherichia coli. Hayakawa T; Howlader MT; Yamagiwa M; Sakai H Appl Microbiol Biotechnol; 2008 Oct; 80(6):1033-7. PubMed ID: 18751699 [TBL] [Abstract][Full Text] [Related]
11. Cry4Aa and Cry4Ba Mosquito-Active Toxins Utilize Different Domains in Binding to a Particular Dechkla M; Charoenjotivadhanakul S; Imtong C; Visitsattapongse S; Li HC; Angsuthanasombat C Toxins (Basel); 2022 Sep; 14(10):. PubMed ID: 36287921 [TBL] [Abstract][Full Text] [Related]
12. Binding of Bacillus thuringiensis subsp. israelensis Cry4Ba to Cyt1Aa has an important role in synergism. Cantón PE; Zanicthe Reyes EZ; Ruiz de Escudero I; Bravo A; Soberón M Peptides; 2011 Mar; 32(3):595-600. PubMed ID: 20558220 [TBL] [Abstract][Full Text] [Related]
13. The role of β20-β21 loop structure in insecticidal activity of Cry1Ac toxin from Bacillus thuringiensis. Lv Y; Tang Y; Zhang Y; Xia L; Wang F; Ding X; Yi S; Li W; Yin J Curr Microbiol; 2011 Feb; 62(2):665-70. PubMed ID: 20878161 [TBL] [Abstract][Full Text] [Related]
14. New insight to structure-function relationship of GalNAc mediated primary interaction between insecticidal Cry1Ac toxin and HaALP receptor of Helicoverpa armigera. Sengupta A; Sarkar A; Priya P; Ghosh Dastidar S; Das S PLoS One; 2013; 8(10):e78249. PubMed ID: 24205171 [TBL] [Abstract][Full Text] [Related]
15. Cry80Aa1, a novel Bacillus thuringiensis toxin with mosquitocidal activity to Culex pipiens pallens. Zhou Y; Wu Z; Zhang J; Wan Y; Jin W; Li Y; Fang X J Invertebr Pathol; 2020 Jun; 173():107386. PubMed ID: 32325072 [TBL] [Abstract][Full Text] [Related]
17. Mutations in domain I interhelical loops affect the rate of pore formation by the Bacillus thuringiensis Cry1Aa toxin in insect midgut brush border membrane vesicles. Lebel G; Vachon V; Préfontaine G; Girard F; Masson L; Juteau M; Bah A; Larouche G; Vincent C; Laprade R; Schwartz JL Appl Environ Microbiol; 2009 Jun; 75(12):3842-50. PubMed ID: 19376918 [TBL] [Abstract][Full Text] [Related]
18. Importance of polarity of the α4-α5 loop residue-Asn(166) in the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: implications for ion permeation and pore opening. Juntadech T; Kanintronkul Y; Kanchanawarin C; Katzenmeier G; Angsuthanasombat C Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):319-27. PubMed ID: 24120447 [TBL] [Abstract][Full Text] [Related]
19. Proteolytic stability of insecticidal toxins expressed in recombinant bacilli. Yang Y; Wang L; Gaviria A; Yuan Z; Berry C Appl Environ Microbiol; 2007 Jan; 73(1):218-25. PubMed ID: 17098916 [TBL] [Abstract][Full Text] [Related]
20. Potential of Cry10Aa and Cyt2Ba, Two Minority δ-endotoxins Produced by Valtierra-de-Luis D; Villanueva M; Lai L; Williams T; Caballero P Toxins (Basel); 2020 May; 12(6):. PubMed ID: 32485828 [No Abstract] [Full Text] [Related] [Next] [New Search]