BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19948867)

  • 1. Oriented immobilization of bacteriophages for biosensor applications.
    Tolba M; Minikh O; Brovko LY; Evoy S; Griffiths MW
    Appl Environ Microbiol; 2010 Jan; 76(2):528-35. PubMed ID: 19948867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacteriophage-based biosorbents coupled with bioluminescent ATP assay for rapid concentration and detection of Escherichia coli.
    Minikh O; Tolba M; Brovko LY; Griffiths MW
    J Microbiol Methods; 2010 Aug; 82(2):177-83. PubMed ID: 20561957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a novel bacteriophage based biomagnetic separation method as an aid for sensitive detection of viable Escherichia coli.
    Wang Z; Wang D; Chen J; Sela DA; Nugen SR
    Analyst; 2016 Feb; 141(3):1009-16. PubMed ID: 26689710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monomeric streptavidin phage display allows efficient immobilization of bacteriophages on magnetic particles for the capture, separation, and detection of bacteria.
    Carmody CM; Nugen SR
    Sci Rep; 2023 Sep; 13(1):16207. PubMed ID: 37758721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces.
    Wang C; Sauvageau D; Elias A
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1128-38. PubMed ID: 26741170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistence of bacteriophage T4 in a starved Escherichia coli culture: evidence for the presence of phage subpopulations.
    Golec P; Wiczk A; Łoś JM; Konopa G; Węgrzyn G; Łoś M
    J Gen Virol; 2011 Apr; 92(Pt 4):997-1003. PubMed ID: 21177930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of Escherichia coli bacteriophages from the stool of pediatric diarrhea patients in Bangladesh.
    Chibani-Chennoufi S; Sidoti J; Bruttin A; Dillmann ML; Kutter E; Qadri F; Sarker SA; Brüssow H
    J Bacteriol; 2004 Dec; 186(24):8287-94. PubMed ID: 15576777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity.
    Mahichi F; Synnott AJ; Yamamichi K; Osada T; Tanji Y
    FEMS Microbiol Lett; 2009 Jun; 295(2):211-7. PubMed ID: 19453513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9.
    Bryson AL; Hwang Y; Sherrill-Mix S; Wu GD; Lewis JD; Black L; Clark TA; Bushman FD
    mBio; 2015 Jun; 6(3):e00648. PubMed ID: 26081634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T4 bacteriophage as a phage display platform.
    Gamkrelidze M; Dąbrowska K
    Arch Microbiol; 2014 Jul; 196(7):473-9. PubMed ID: 24828789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role for bacteriophage T4 rI gene function in the control of phage development during pseudolysogeny and in slowly growing host cells.
    Los M; Wegrzyn G; Neubauer P
    Res Microbiol; 2003 Oct; 154(8):547-52. PubMed ID: 14527655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards rapid on-site phage-mediated detection of generic Escherichia coli in water using luminescent and visual readout.
    Burnham S; Hu J; Anany H; Brovko L; Deiss F; Derda R; Griffiths MW
    Anal Bioanal Chem; 2014 Sep; 406(23):5685-93. PubMed ID: 24969469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xenogeneic Regulation of the Bacterial Transcription Machinery.
    Tabib-Salazar A; Mulvenna N; Severinov K; Matthews SJ; Wigneshweraraj S
    J Mol Biol; 2019 Sep; 431(20):4078-4092. PubMed ID: 30776429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering T4 Bacteriophage for
    Dong J; Chen C; Liu Y; Zhu J; Li M; Rao VB; Tao P
    ACS Synth Biol; 2021 Oct; 10(10):2639-2648. PubMed ID: 34546037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, assembly, and DNA packaging of the bacteriophage T4 head.
    Black LW; Rao VB
    Adv Virus Res; 2012; 82():119-53. PubMed ID: 22420853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteriophage T4 nanoparticle capsid surface SOC and HOC bipartite display with enhanced classical swine fever virus immunogenicity: a powerful immunological approach.
    Wu J; Tu C; Yu X; Zhang M; Zhang N; Zhao M; Nie W; Ren Z
    J Virol Methods; 2007 Jan; 139(1):50-60. PubMed ID: 17081627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in gp37 Expand the Host Range of a T4-Like Phage.
    Chen M; Zhang L; Abdelgader SA; Yu L; Xu J; Yao H; Lu C; Zhang W
    Appl Environ Microbiol; 2017 Dec; 83(23):. PubMed ID: 28939606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protection from proteolysis using a T4::T7-RNAP phage expression-packaging-processing system.
    Hong YR; Mullaney JM; Black LW
    Gene; 1995 Aug; 162(1):5-11. PubMed ID: 7557416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair.
    Wu X; Zhu J; Tao P; Rao VB
    mBio; 2021 Jun; 12(3):e0136121. PubMed ID: 34154416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating Interactions between T4 Phage Long Tail Fibers and Escherichia coli Receptors.
    Suga A; Kawaguchi M; Yonesaki T; Otsuka Y
    Appl Environ Microbiol; 2021 Jun; 87(13):e0042321. PubMed ID: 33893116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.