These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19948953)

  • 1. Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages.
    Jacques PA; Artero V; Pécaut J; Fontecave M
    Proc Natl Acad Sci U S A; 2009 Dec; 106(49):20627-32. PubMed ID: 19948953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes.
    Kaeffer N; Chavarot-Kerlidou M; Artero V
    Acc Chem Res; 2015 May; 48(5):1286-95. PubMed ID: 25941953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cobaloximes as functional models for hydrogenases. 2. Proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media.
    Baffert C; Artero V; Fontecave M
    Inorg Chem; 2007 Mar; 46(5):1817-24. PubMed ID: 17269760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H₂ evolution under fully aqueous conditions.
    Andreiadis ES; Jacques PA; Tran PD; Leyris A; Chavarot-Kerlidou M; Jousselme B; Matheron M; Pécaut J; Palacin S; Fontecave M; Artero V
    Nat Chem; 2013 Jan; 5(1):48-53. PubMed ID: 23247177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational study of the mechanism of hydrogen evolution by cobalt(diimine-dioxime) catalysts.
    Bhattacharjee A; Andreiadis ES; Chavarot-Kerlidou M; Fontecave M; Field MJ; Artero V
    Chemistry; 2013 Nov; 19(45):15166-74. PubMed ID: 24105795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substituent effects on cobalt diglyoxime catalysts for hydrogen evolution.
    Solis BH; Hammes-Schiffer S
    J Am Chem Soc; 2011 Nov; 133(47):19036-9. PubMed ID: 22032414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton electroreduction catalyzed by cobaloximes: functional models for hydrogenases.
    Razavet M; Artero V; Fontecave M
    Inorg Chem; 2005 Jun; 44(13):4786-95. PubMed ID: 15962987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase.
    Brazzolotto D; Gennari M; Queyriaux N; Simmons TR; Pécaut J; Demeshko S; Meyer F; Orio M; Artero V; Duboc C
    Nat Chem; 2016 Nov; 8(11):1054-1060. PubMed ID: 27768098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling NiFe hydrogenases: nickel-based electrocatalysts for hydrogen production.
    Canaguier S; Artero V; Fontecave M
    Dalton Trans; 2008 Jan; (3):315-25. PubMed ID: 18411840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splitting water with cobalt.
    Artero V; Chavarot-Kerlidou M; Fontecave M
    Angew Chem Int Ed Engl; 2011 Aug; 50(32):7238-66. PubMed ID: 21748828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalytic hydrogen evolution in acidic water with molecular cobalt tetraazamacrocycles.
    McCrory CC; Uyeda C; Peters JC
    J Am Chem Soc; 2012 Feb; 134(6):3164-70. PubMed ID: 22280515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The monoanionic pi-radical redox state of alpha-iminoketones in bis(ligand)metal complexes of nickel and cobalt.
    Lu CC; Bill E; Weyhermüller T; Bothe E; Wieghardt K
    Inorg Chem; 2007 Sep; 46(19):7880-9. PubMed ID: 17715916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization and intramolecular aliphatic C-H oxidation ability of M(III)(mu-O)2M(III) complexes of Ni and Co with the hydrotris-(3,5-dialkyl-4-X-pyrazolyl)borate ligands TpMe2,X (X = Me, H, Br) and TpiPr2.
    Hikichi S; Yoshizawa M; Sasakura Y; Komatsuzaki H; Moro-oka Y; Akita M
    Chemistry; 2001 Dec; 7(23):5011-28. PubMed ID: 11775675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake.
    Le Goff A; Artero V; Jousselme B; Tran PD; Guillet N; Métayé R; Fihri A; Palacin S; Fontecave M
    Science; 2009 Dec; 326(5958):1384-7. PubMed ID: 19965754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Systematic Comparative Study of Hydrogen-Evolving Molecular Catalysts in Aqueous Solutions.
    Roy S; Bacchi M; Berggren G; Artero V
    ChemSusChem; 2015 Nov; 8(21):3632-8. PubMed ID: 26383700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ligand modification and protonation on metal oxime hydrogen evolution electrocatalysts.
    Solis BH; Yu Y; Hammes-Schiffer S
    Inorg Chem; 2013 Jun; 52(12):6994-9. PubMed ID: 23701462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Molecular Ni-complex Containing Tetrahedral Nickel Selenide Core as Highly Efficient Electrocatalyst for Water Oxidation.
    Masud J; Ioannou PC; Levesanos N; Kyritsis P; Nath M
    ChemSusChem; 2016 Nov; 9(22):3128-3132. PubMed ID: 27619260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical synthesis and structural characterization of Co(II), Ni(II) and Cu(II) complexes of N,N-bis(4,5-dimethyl-2-hydroxybenzyl)-N-(2-pyridylmethyl)amine.
    Labisbal E; Rodríguez L; Souto O; Sousa-Pedrares A; García-Vázquez JA; Romero J; Sousa A; Yáñez M; Orallo F; Real JA
    Dalton Trans; 2009 Oct; (40):8644-56. PubMed ID: 19809741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of electron transfer reactions of H2-evolving cobalt diglyoxime catalysts.
    Dempsey JL; Winkler JR; Gray HB
    J Am Chem Soc; 2010 Jan; 132(3):1060-5. PubMed ID: 20043639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comment on "New insights in the electrocatalytic proton reduction and hydrogen oxidation by bioinspired catalysts: a DFT investigation".
    Dupuis M; Chen S; Raugei S; DuBois DL; Bullock RM
    J Phys Chem A; 2011 May; 115(18):4861-5. PubMed ID: 21504191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.