These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 19949697)
61. Dependable and efficient clinical utility of target capture-based deep sequencing in molecular diagnosis of retinitis pigmentosa. Wang J; Zhang VW; Feng Y; Tian X; Li FY; Truong C; Wang G; Chiang PW; Lewis RA; Wong LJ Invest Ophthalmol Vis Sci; 2014 Aug; 55(10):6213-23. PubMed ID: 25097241 [TBL] [Abstract][Full Text] [Related]
62. Sequencing by hybridization (SBH): advantages, achievements, and opportunities. Drmanac R; Drmanac S; Chui G; Diaz R; Hou A; Jin H; Jin P; Kwon S; Lacy S; Moeur B; Shafto J; Swanson D; Ukrainczyk T; Xu C; Little D Adv Biochem Eng Biotechnol; 2002; 77():75-101. PubMed ID: 12227738 [TBL] [Abstract][Full Text] [Related]
63. Targeted investigation of the Neandertal genome by array-based sequence capture. Burbano HA; Hodges E; Green RE; Briggs AW; Krause J; Meyer M; Good JM; Maricic T; Johnson PL; Xuan Z; Rooks M; Bhattacharjee A; Brizuela L; Albert FW; de la Rasilla M; Fortea J; Rosas A; Lachmann M; Hannon GJ; Pääbo S Science; 2010 May; 328(5979):723-5. PubMed ID: 20448179 [TBL] [Abstract][Full Text] [Related]
64. Whole-genome sequencing and variant discovery in C. elegans. Hillier LW; Marth GT; Quinlan AR; Dooling D; Fewell G; Barnett D; Fox P; Glasscock JI; Hickenbotham M; Huang W; Magrini VJ; Richt RJ; Sander SN; Stewart DA; Stromberg M; Tsung EF; Wylie T; Schedl T; Wilson RK; Mardis ER Nat Methods; 2008 Feb; 5(2):183-8. PubMed ID: 18204455 [TBL] [Abstract][Full Text] [Related]
65. On the critical evaluation and confirmation of germline sequence variants identified using massively parallel sequencing. Kubiritova Z; Gyuraszova M; Nagyova E; Hyblova M; Harsanyova M; Budis J; Hekel R; Gazdarica J; Duris F; Kadasi L; Szemes T; Radvanszky J J Biotechnol; 2019 Jun; 298():64-75. PubMed ID: 30998956 [TBL] [Abstract][Full Text] [Related]
66. Targeted sequence capture and resequencing implies a predominant role of regulatory regions in the divergence of a sympatric lake whitefish species pair (Coregonus clupeaformis). Hebert FO; Renaut S; Bernatchez L Mol Ecol; 2013 Oct; 22(19):4896-914. PubMed ID: 23962219 [TBL] [Abstract][Full Text] [Related]
67. Massively parallel exon capture and library-free resequencing across 16 genomes. Turner EH; Lee C; Ng SB; Nickerson DA; Shendure J Nat Methods; 2009 May; 6(5):315-6. PubMed ID: 19349981 [No Abstract] [Full Text] [Related]
69. Multiple target loci assembly sequencing (mTAS). Han H; Yoon JK; Cho BC; Kim H; Bang D Anal Biochem; 2011 Aug; 415(2):218-20. PubMed ID: 21536013 [TBL] [Abstract][Full Text] [Related]
70. Targeted next-generation sequencing by specific capture of multiple genomic loci using low-volume microfluidic DNA arrays. Bau S; Schracke N; Kränzle M; Wu H; Stähler PF; Hoheisel JD; Beier M; Summerer D Anal Bioanal Chem; 2009 Jan; 393(1):171-5. PubMed ID: 18958448 [TBL] [Abstract][Full Text] [Related]
71. Mutations causing severe combined immunodeficiency: detection with a custom resequencing microarray. Lebet T; Chiles R; Hsu AP; Mansfield ES; Warrington JA; Puck JM Genet Med; 2008 Aug; 10(8):575-85. PubMed ID: 18641513 [TBL] [Abstract][Full Text] [Related]
72. Exome sequencing: capture and sequencing of all human coding regions for disease gene discovery. Priya RR; Rajasimha HK; Brooks MJ; Swaroop A Methods Mol Biol; 2012; 884():335-51. PubMed ID: 22688718 [TBL] [Abstract][Full Text] [Related]
73. High throughput genetic analysis of congenital myasthenic syndromes using resequencing microarrays. Denning L; Anderson JA; Davis R; Gregg JP; Kuzdenyi J; Maselli RA PLoS One; 2007 Sep; 2(9):e918. PubMed ID: 17878953 [TBL] [Abstract][Full Text] [Related]
74. Microdroplet-based PCR enrichment for large-scale targeted sequencing. Tewhey R; Warner JB; Nakano M; Libby B; Medkova M; David PH; Kotsopoulos SK; Samuels ML; Hutchison JB; Larson JW; Topol EJ; Weiner MP; Harismendy O; Olson J; Link DR; Frazer KA Nat Biotechnol; 2009 Nov; 27(11):1025-31. PubMed ID: 19881494 [TBL] [Abstract][Full Text] [Related]
75. High-throughput, high-accuracy array-based resequencing. Zheng J; Moorhead M; Weng L; Siddiqui F; Carlton VE; Ireland JS; Lee L; Peterson J; Wilkins J; Lin S; Kan Z; Seshagiri S; Davis RW; Faham M Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6712-7. PubMed ID: 19342489 [TBL] [Abstract][Full Text] [Related]
76. A flexible approach for highly multiplexed candidate gene targeted resequencing. Natsoulis G; Bell JM; Xu H; Buenrostro JD; Ordonez H; Grimes S; Newburger D; Jensen M; Zahn JM; Zhang N; Ji HP PLoS One; 2011; 6(6):e21088. PubMed ID: 21738606 [TBL] [Abstract][Full Text] [Related]
77. Whole exome capture in solution with 3 Gbp of data. Bainbridge MN; Wang M; Burgess DL; Kovar C; Rodesch MJ; D'Ascenzo M; Kitzman J; Wu YQ; Newsham I; Richmond TA; Jeddeloh JA; Muzny D; Albert TJ; Gibbs RA Genome Biol; 2010; 11(6):R62. PubMed ID: 20565776 [TBL] [Abstract][Full Text] [Related]
78. Sequencing small genomic targets with high efficiency and extreme accuracy. Schmitt MW; Fox EJ; Prindle MJ; Reid-Bayliss KS; True LD; Radich JP; Loeb LA Nat Methods; 2015 May; 12(5):423-5. PubMed ID: 25849638 [TBL] [Abstract][Full Text] [Related]
79. Genomic mutation rates: what high-throughput methods can tell us. Nishant KT; Singh ND; Alani E Bioessays; 2009 Sep; 31(9):912-20. PubMed ID: 19644920 [TBL] [Abstract][Full Text] [Related]
80. SOLiD sequencing of four Vibrio vulnificus genomes enables comparative genomic analysis and identification of candidate clade-specific virulence genes. Gulig PA; de Crécy-Lagard V; Wright AC; Walts B; Telonis-Scott M; McIntyre LM BMC Genomics; 2010 Sep; 11():512. PubMed ID: 20863407 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]