BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 19949770)

  • 1. Stability of multi-permeable reactive barriers for long term removal of mixed contaminants.
    Lee JY; Lee KJ; Youm SY; Lee MR; Kamala-Kannan S; Oh BT
    Bull Environ Contam Toxicol; 2010 Feb; 84(2):250-4. PubMed ID: 19949770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier.
    Zolla V; Freyria FS; Sethi R; Di Molfetta A
    J Environ Qual; 2009; 38(3):897-908. PubMed ID: 19329678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater.
    Jun D; Yongsheng Z; Weihong Z; Mei H
    J Hazard Mater; 2009 Jan; 161(1):224-30. PubMed ID: 18479811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: Implications for groundwater nitrate remediation using permeable reactive barriers.
    Su C; Puls RW
    Chemosphere; 2007 Apr; 67(8):1653-62. PubMed ID: 17257645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of zero-valent iron as a permeable reactive barrier for long-term removal of arsenic compounds from synthetic water.
    Lee KJ; Lee Y; Yoon J; Kamala-Kannan S; Park SM; Oh BT
    Environ Technol; 2009 Dec; 30(13):1425-34. PubMed ID: 20088207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies.
    Wilkin RT; Acree SD; Ross RR; Beak DG; Lee TR
    J Contam Hydrol; 2009 Apr; 106(1-2):1-14. PubMed ID: 19167133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Results of the reactant sand-fracking pilot test and implications for the in situ remediation of chlorinated VOCs and metals in deep and fractured bedrock aquifers.
    Marcus DL; Bonds C
    J Hazard Mater; 1999 Aug; 68(1-2):125-53. PubMed ID: 10518668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Groundwater protection from cadmium contamination by permeable reactive barriers.
    Di Natale F; Di Natale M; Greco R; Lancia A; Laudante C; Musmarra D
    J Hazard Mater; 2008 Dec; 160(2-3):428-34. PubMed ID: 18448247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater.
    Phillips DH; Van Nooten T; Bastiaens L; Russell MI; Dickson K; Plant S; Ahad JM; Newton T; Elliot T; Kalin RM
    Environ Sci Technol; 2010 May; 44(10):3861-9. PubMed ID: 20420442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective remediation of grossly polluted acidic, and metal-rich, spoil heap drainage using a novel, low-cost, permeable reactive barrier in Northumberland, UK.
    Jarvis AP; Moustafa M; Orme PH; Younger PL
    Environ Pollut; 2006 Sep; 143(2):261-8. PubMed ID: 16443312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zero valent iron remediation of a mixed brominated ethene contaminated groundwater.
    Cohen EL; Patterson BM; McKinley AJ; Prommer H
    J Contam Hydrol; 2009 Jan; 103(3-4):109-18. PubMed ID: 18990465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A calcite permeable reactive barrier for the remediation of Fluoride from spent potliner (SPL) contaminated groundwater.
    Turner BD; Binning PJ; Sloan SW
    J Contam Hydrol; 2008 Jan; 95(3-4):110-20. PubMed ID: 17913284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical depassivation of zero-valent iron for trichloroethene reduction.
    Chen L; Jin S; Fallgren PH; Swoboda-Colberg NG; Liu F; Colberg PJ
    J Hazard Mater; 2012 Nov; 239-240():265-9. PubMed ID: 23009798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron.
    Lookman R; Bastiaens L; Borremans B; Maesen M; Gemoets J; Diels L
    J Contam Hydrol; 2004 Oct; 74(1-4):133-44. PubMed ID: 15358490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up.
    Scherer MM; Richter S; Valentine RL; Alvarez PJ
    Crit Rev Microbiol; 2000; 26(4):221-64. PubMed ID: 11192023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competing TCE and cis-DCE degradation kinetics by zero-valent iron-experimental results and numerical simulation.
    Schäfer D; Köber R; Dahmke A
    J Contam Hydrol; 2003 Sep; 65(3-4):183-202. PubMed ID: 12935949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of barrier materials for removing pollutants from groundwater rich in natural organic matter.
    Kozyatnyk I; Haglund P; Lövgren L; Tysklind M; Gustafsson A; Törneman N
    Water Sci Technol; 2014; 70(1):32-9. PubMed ID: 25026576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies.
    Beak DG; Wilkin RT
    J Contam Hydrol; 2009 Apr; 106(1-2):15-28. PubMed ID: 19167132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs).
    Muchitsch N; Van Nooten T; Bastiaens L; Kjeldsen P
    J Contam Hydrol; 2011 Nov; 126(3-4):258-70. PubMed ID: 22115091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of solid reactive mixtures for the development of biological permeable reactive barriers.
    Pagnanelli F; Viggi CC; Mainelli S; Toro L
    J Hazard Mater; 2009 Oct; 170(2-3):998-1005. PubMed ID: 19505754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.