These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19949976)

  • 1. Differential biomechanical development of elastic tissues in the bovine fetus.
    Walter EJ; Wells SM
    Ann Biomed Eng; 2010 Apr; 38(4):1626-46. PubMed ID: 19949976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the mechanical properties and residual strain of elastic tissue in the developing fetal aorta.
    Wells SM; Walter EJ
    Ann Biomed Eng; 2010 Feb; 38(2):345-56. PubMed ID: 19859808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical anisotropy of inflated elastic tissue from the pig aorta.
    Lillie MA; Shadwick RE; Gosline JM
    J Biomech; 2010 Aug; 43(11):2070-8. PubMed ID: 20430395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical and numerical analyses of the micromechanics of soft fibrous connective tissues.
    deBotton G; Oren T
    Biomech Model Mechanobiol; 2013 Jan; 12(1):151-66. PubMed ID: 22527363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite elasticity formulations for evaluation of ligamentous tissue.
    Kohles SS; Thielke RJ; Vanderby R
    Biomed Mater Eng; 1997; 7(6):387-90. PubMed ID: 9622106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain rate sensitivity of skin tissue under thermomechanical loading.
    Zhou B; Xu F; Chen CQ; Lu TJ
    Philos Trans A Math Phys Eng Sci; 2010 Feb; 368(1912):679-90. PubMed ID: 20047945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the fatigue behavior of the medial collateral ligament utilizing traditional and novel mechanical variables for the assessment of damage accumulation.
    Zec ML; Thistlethwaite P; Frank CB; Shrive NG
    J Biomech Eng; 2010 Jan; 132(1):011001. PubMed ID: 20524739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the biomechanical behaviour of hindfoot ligaments.
    Forestiero A; Carniel EL; Venturato C; Natali AN
    Proc Inst Mech Eng H; 2013 Jun; 227(6):683-92. PubMed ID: 23636750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indentation versus tensile measurements of Young's modulus for soft biological tissues.
    McKee CT; Last JA; Russell P; Murphy CJ
    Tissue Eng Part B Rev; 2011 Jun; 17(3):155-64. PubMed ID: 21303220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomechanical assessment to evaluate breed differences in normal porcine medial collateral ligaments.
    Germscheid NM; Thornton GM; Hart DA; Hildebrand KA
    J Biomech; 2011 Feb; 44(4):725-31. PubMed ID: 21092965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical response of periodontal ligament: effects of specimen geometry, preconditioning cycles and time lapse.
    Bergomi M; Anselm Wiskott HW; Botsis J; Shibata T; Belser UC
    J Biomech; 2009 Oct; 42(14):2410-4. PubMed ID: 19665135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive formulation and analysis of heel pad tissues mechanics.
    Natali AN; Fontanella CG; Carniel EL
    Med Eng Phys; 2010 Jun; 32(5):516-22. PubMed ID: 20304698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apparent Young's modulus of vertebral cortico-cancellous bone specimens.
    El Masri F; Sapin de Brosses E; Rhissassi K; Skalli W; Mitton D
    Comput Methods Biomech Biomed Engin; 2012; 15(1):23-8. PubMed ID: 21749276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of tissue composition and structure to mechanical response of articular cartilage under different loading geometries and strain rates.
    Julkunen P; Jurvelin JS; Isaksson H
    Biomech Model Mechanobiol; 2010 Apr; 9(2):237-45. PubMed ID: 19680701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Load elongation behavior of the canine anterior cruciate ligament.
    Dorlot JM; Ait Ba Sidi M; Tremblay GM; Drouin G
    J Biomech Eng; 1980 Aug; 102(3):190. PubMed ID: 19530799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models.
    Hu J; Klinich KD; Miller CS; Nazmi G; Pearlman MD; Schneider LW; Rupp JD
    J Biomech; 2009 Nov; 42(15):2528-34. PubMed ID: 19665131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of hyaluronic acid, collagen and elastin in the mechanical properties of connective tissues.
    Oxlund H; Andreassen TT
    J Anat; 1980 Dec; 131(Pt 4):611-20. PubMed ID: 7216901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of methods used to measure the thickness of soft tissues and their influence on the evaluation of tensile stress.
    O'Leary SA; Doyle BJ; McGloughlin TM
    J Biomech; 2013 Jul; 46(11):1955-60. PubMed ID: 23800758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On modelling nonlinear viscoelastic effects in ligaments.
    Peña E; Peña JA; Doblaré M
    J Biomech; 2008 Aug; 41(12):2659-66. PubMed ID: 18672245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix mechanical properties of transversalis fascia in inguinal herniation as a model for tissue expansion.
    Kureshi A; Vaiude P; Nazhat SN; Petrie A; Brown RA
    J Biomech; 2008 Dec; 41(16):3462-8. PubMed ID: 19012890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.