These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19950256)

  • 1. Neurons associated with the flip-flop activity in the lateral accessory lobe and ventral protocerebrum of the silkworm moth brain.
    Iwano M; Hill ES; Mori A; Mishima T; Mishima T; Ito K; Kanzaki R
    J Comp Neurol; 2010 Feb; 518(3):366-88. PubMed ID: 19950256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural control mechanisms of the pheromone-triggered programmed behavior in male silkmoths revealed by double-labeling of descending interneurons and a motor neuron.
    Wada S; Kanzaki R
    J Comp Neurol; 2005 Apr; 484(2):168-82. PubMed ID: 15736224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulus-selective spiking is driven by the relative timing of synchronous excitation and disinhibition in cat striate neurons in vivo.
    Azouz R; Gray CM
    Eur J Neurosci; 2008 Oct; 28(7):1286-300. PubMed ID: 18973556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-lasting excitation of protocerebral bilateral neurons in the pheromone-processing pathways of the male moth Bombyx mori.
    Kanzaki R; Shibuya T
    Brain Res; 1992 Aug; 587(2):211-5. PubMed ID: 1525657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive morphological identification and GABA immunocytochemistry of antennal lobe local interneurons in Bombyx mori.
    Seki Y; Kanzaki R
    J Comp Neurol; 2008 Jan; 506(1):93-107. PubMed ID: 17990273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pheromone processing center in the protocerebrum of Bombyx mori revealed by nitric oxide-induced anti-cGMP immunocytochemistry.
    Seki Y; Aonuma H; Kanzaki R
    J Comp Neurol; 2005 Jan; 481(4):340-51. PubMed ID: 15593336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic inputs to granule cells of the dorsal cochlear nucleus.
    Balakrishnan V; Trussell LO
    J Neurophysiol; 2008 Jan; 99(1):208-19. PubMed ID: 17959739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial analysis of spike-timing-dependent LTP and LTD in the CA1 area of hippocampal slices using optical imaging.
    Tsukada M; Aihara T; Kobayashi Y; Shimazaki H
    Hippocampus; 2005; 15(1):104-9. PubMed ID: 15390160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Commissural mirror-symmetric excitation and reciprocal inhibition between the two superior colliculi and their roles in vertical and horizontal eye movements.
    Takahashi M; Sugiuchi Y; Shinoda Y
    J Neurophysiol; 2007 Nov; 98(5):2664-82. PubMed ID: 17728384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Commissural excitation and inhibition by the superior colliculus in tectoreticular neurons projecting to omnipause neuron and inhibitory burst neuron regions.
    Takahashi M; Sugiuchi Y; Izawa Y; Shinoda Y
    J Neurophysiol; 2005 Sep; 94(3):1707-26. PubMed ID: 16105954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat.
    van Haeften T; Baks-te-Bulte L; Goede PH; Wouterlood FG; Witter MP
    Hippocampus; 2003; 13(8):943-52. PubMed ID: 14750656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periodic oscillatory activity in parahippocampal slices maintained in vitro.
    Kano T; Inaba Y; Avoli M
    Neuroscience; 2005; 130(4):1041-53. PubMed ID: 15652999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities.
    Okun M; Lampl I
    Nat Neurosci; 2008 May; 11(5):535-7. PubMed ID: 18376400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of behavior-related excitatory inputs to a central pacemaker nucleus in a weakly electric fish.
    Curti S; Comas V; Rivero C; Borde M
    Neuroscience; 2006 Jun; 140(2):491-504. PubMed ID: 16563638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous recurrent network activity in organotypic rat hippocampal slices.
    Mohajerani MH; Cherubini E
    Eur J Neurosci; 2005 Jul; 22(1):107-18. PubMed ID: 16029200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in multiple forms of short-term plasticity between excitatory and inhibitory hippocampal neurons in culture.
    Kaplan MP; Wilcox KS; Dichter MA
    Synapse; 2003 Oct; 50(1):41-52. PubMed ID: 12872293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional diversity and specificity of neostriatal interneurons.
    Tepper JM; Bolam JP
    Curr Opin Neurobiol; 2004 Dec; 14(6):685-92. PubMed ID: 15582369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changing excitation and inhibition in simulated neural networks: effects on induced bursting behavior.
    Kudela P; Franaszczuk PJ; Bergey GK
    Biol Cybern; 2003 Apr; 88(4):276-85. PubMed ID: 12690486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitatory and inhibitory responses of dopamine neurons in the ventral tegmental area to nicotine.
    Erhardt S; Schwieler L; Engberg G
    Synapse; 2002 Mar; 43(4):227-37. PubMed ID: 11835517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.