BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19950511)

  • 1. Screening by imaging: scaling up single-DNA-molecule analysis with a novel parabolic VA-TIRF reflector and noise-reduction techniques.
    van 't Hoff M; Reuter M; Dryden DT; Oheim M
    Phys Chem Chem Phys; 2009 Sep; 11(35):7713-20. PubMed ID: 19950511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The kinetics of YOYO-1 intercalation into single molecules of double-stranded DNA.
    Reuter M; Dryden DT
    Biochem Biophys Res Commun; 2010 Dec; 403(2):225-9. PubMed ID: 21073861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superresolution imaging of single DNA molecules using stochastic photoblinking of minor groove and intercalating dyes.
    Miller H; Zhou Z; Wollman AJ; Leake MC
    Methods; 2015 Oct; 88():81-8. PubMed ID: 25637032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single-molecule barcoding system using nanoslits for DNA analysis : nanocoding.
    Jo K; Schramm TM; Schwartz DC
    Methods Mol Biol; 2009; 544():29-42. PubMed ID: 19488691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study on real-time imaging of single stretched DNA molecules by total internal reflection fluorescence microscopy].
    Lin DY; Liu XC; Wang PF; Ma WY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 May; 30(5):1266-70. PubMed ID: 20672615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time observation of a single DNA digestion by lambda exonuclease under a fluorescence microscope field.
    Matsuura S; Komatsu J; Hirano K; Yasuda H; Takashima K; Katsura S; Mizuno A
    Nucleic Acids Res; 2001 Aug; 29(16):E79. PubMed ID: 11504887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digestion of individual DNA molecules by lambda-exonuclease at liquid-solid interface.
    Kang SH; Lee S; Yeung ES
    Analyst; 2010 Jul; 135(7):1759-64. PubMed ID: 20436973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1.
    Bennink ML; Schärer OD; Kanaar R; Sakata-Sogawa K; Schins JM; Kanger JS; de Grooth BG; Greve J
    Cytometry; 1999 Jul; 36(3):200-8. PubMed ID: 10404969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of oxazole yellow dyes with DNA studied with hybrid optical tweezers and fluorescence microscopy.
    Murade CU; Subramaniam V; Otto C; Bennink ML
    Biophys J; 2009 Aug; 97(3):835-43. PubMed ID: 19651041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices.
    Wabuyele MB; Ford SM; Stryjewski W; Barrow J; Soper SA
    Electrophoresis; 2001 Oct; 22(18):3939-48. PubMed ID: 11700724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing concentration-dependent behavior of DNA-binding proteins on a single-molecule level illustrated by Rad51.
    Frykholm K; Freitag C; Persson F; Tegenfeldt JO; Granéli A
    Anal Biochem; 2013 Dec; 443(2):261-8. PubMed ID: 23994563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous topographic and fluorescence imaging of single DNA molecules for DNA analysis with a scanning near-field optical/atomic force microscope.
    Kim JM; Ohtani T; Sugiyama S; Hirose T; Muramatsu H
    Anal Chem; 2001 Dec; 73(24):5984-91. PubMed ID: 11791570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid DNA mapping by fluorescent single molecule detection.
    Xiao M; Phong A; Ha C; Chan TF; Cai D; Leung L; Wan E; Kistler AL; DeRisi JL; Selvin PR; Kwok PY
    Nucleic Acids Res; 2007; 35(3):e16. PubMed ID: 17175538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single molecule adsorption at compositionally patterned self-assembled monolayers on gold: role of domain boundaries.
    Park HY; Li HW; Yeung ES; Porter MD
    Langmuir; 2006 Apr; 22(9):4244-9. PubMed ID: 16618171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct observation of single native DNA molecules in a microchannel by differential interference contrast microscopy.
    Kang SH; Lee S; Yeung ES
    Anal Chem; 2004 Aug; 76(15):4459-64. PubMed ID: 15283588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanofluidic channel fabrication and manipulation of DNA molecules.
    Wang KG; Niu H
    Methods Mol Biol; 2009; 544():17-27. PubMed ID: 19488690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intercalating fluorescence dye YOYO-1 prevents the folding transition in giant duplex DNA.
    Yoshinaga N; Akitaya T; Yoshikawa K
    Biochem Biophys Res Commun; 2001 Aug; 286(2):264-7. PubMed ID: 11500031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct visualization of individual DNA molecules by fluorescence microscopy: characterization of the factors affecting signal/background and optimization of imaging conditions using YOYO.
    Gurrieri S; Wells KS; Johnson ID; Bustamante C
    Anal Biochem; 1997 Jun; 249(1):44-53. PubMed ID: 9193707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple method of DNA stretching on glass substrate for fluorescence imaging and spectroscopy.
    Neupane GP; Dhakal KP; Kim MS; Lee H; Guthold M; Joseph VS; Hong JD; Kim J
    J Biomed Opt; 2014 May; 19(5):051210. PubMed ID: 24407597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput single-molecule imaging system using nanofabricated trenches and fluorescent DNA-binding proteins.
    Kang Y; Cheon NY; Cha J; Kim A; Kim HI; Lee L; Kim KO; Jo K; Lee JY
    Biotechnol Bioeng; 2020 Jun; 117(6):1640-1648. PubMed ID: 32162675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.