These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 19950920)

  • 21. Tryptophan tryptophylquinone biosynthesis: a radical approach to posttranslational modification.
    Davidson VL; Liu A
    Biochim Biophys Acta; 2012 Nov; 1824(11):1299-305. PubMed ID: 22314272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the tryptophan-derived quinone cofactor of methylamine dehydrogenase by resonance Raman spectroscopy.
    Backes G; Davidson VL; Huitema F; Duine JA; Sanders-Loehr J
    Biochemistry; 1991 Sep; 30(38):9201-10. PubMed ID: 1892829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and mechanism of tryptophylquinone enzymes.
    Davidson VL
    Bioorg Chem; 2005 Jun; 33(3):159-70. PubMed ID: 15888309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of reaction products and intermediates of aromatic-amine dehydrogenase by 15N and 13C NMR.
    Bishop GR; Zhu Z; Whitehead TL; Hicks RP; Davidson VL
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1159-63. PubMed ID: 9494080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structures of CO and NO adducts of MauG in complex with pre-methylamine dehydrogenase: implications for the mechanism of dioxygen activation.
    Yukl ET; Goblirsch BR; Davidson VL; Wilmot CM
    Biochemistry; 2011 Apr; 50(14):2931-8. PubMed ID: 21355604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Active site structure of methylamine dehydrogenase: hydrazines identify C6 as the reactive site of the tryptophan-derived quinone cofactor.
    Huizinga EG; van Zanten BA; Duine JA; Jongejan JA; Huitema F; Wilson KS; Hol WG
    Biochemistry; 1992 Oct; 31(40):9789-95. PubMed ID: 1390754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomic level insight into the oxidative half-reaction of aromatic amine dehydrogenase.
    Roujeinikova A; Scrutton NS; Leys D
    J Biol Chem; 2006 Dec; 281(52):40264-72. PubMed ID: 17005560
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The tightly bound calcium of MauG is required for tryptophan tryptophylquinone cofactor biosynthesis.
    Shin S; Feng M; Chen Y; Jensen LM; Tachikawa H; Wilmot CM; Liu A; Davidson VL
    Biochemistry; 2011 Jan; 50(1):144-50. PubMed ID: 21128656
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of intermediates in tryptophan tryptophylquinone enzymes.
    Davidson VL; Brooks HB; Graichen ME; Jones LH; Hyun YL
    Methods Enzymol; 1995; 258():176-90. PubMed ID: 8524149
    [No Abstract]   [Full Text] [Related]  

  • 30. Further insights into quinone cofactor biogenesis: probing the role of mauG in methylamine dehydrogenase tryptophan tryptophylquinone formation.
    Pearson AR; De La Mora-Rey T; Graichen ME; Wang Y; Jones LH; Marimanikkupam S; Agger SA; Grimsrud PA; Davidson VL; Wilmot CM
    Biochemistry; 2004 May; 43(18):5494-502. PubMed ID: 15122915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The enzyme aromatic amine dehydrogenase induces a substrate conformation crucial for promoting vibration that significantly reduces the effective potential energy barrier to proton transfer.
    Johannissen LO; Scrutton NS; Sutcliffe MJ
    J R Soc Interface; 2008 Dec; 5 Suppl 3(Suppl 3):S225-32. PubMed ID: 18495615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic and physical evidence that the diheme enzyme MauG tightly binds to a biosynthetic precursor of methylamine dehydrogenase with incompletely formed tryptophan tryptophylquinone.
    Li X; Fu R; Liu A; Davidson VL
    Biochemistry; 2008 Mar; 47(9):2908-12. PubMed ID: 18220357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quinoproteins: enzymes containing the quinonoid cofactor pyrroloquinoline quinone, topaquinone or tryptophan-tryptophan quinone.
    Duine JA
    Eur J Biochem; 1991 Sep; 200(2):271-84. PubMed ID: 1653700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quinoprotein-catalysed reactions.
    Anthony C
    Biochem J; 1996 Dec; 320 ( Pt 3)(Pt 3):697-711. PubMed ID: 9003352
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein redox potential measurements based on kinetic analysis with mediated continuous-flow column electrolytic spectroelectrochemical technique. Application to TTQ-containing methylamine dehydrogenase.
    Sato A; Torimura M; Takagi K; Kano K; Ikeda T
    Anal Chem; 2000 Jan; 72(1):150-5. PubMed ID: 10655647
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning and characterization of histamine dehydrogenase from Nocardioides simplex.
    Limburg J; Mure M; Klinman JP
    Arch Biochem Biophys; 2005 Apr; 436(1):8-22. PubMed ID: 15752704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Redox Properties of a Cysteine Tryptophylquinone-Dependent Glycine Oxidase Are Distinct from Those of Tryptophylquinone-Dependent Dehydrogenases.
    Ma Z; Davidson VL
    Biochemistry; 2019 Apr; 58(17):2243-2249. PubMed ID: 30945853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deuterium kinetic isotope effect and stopped-flow kinetic studies of the quinoprotein methylamine dehydrogenase.
    Brooks HB; Jones LH; Davidson VL
    Biochemistry; 1993 Mar; 32(10):2725-9. PubMed ID: 8448129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymatic and electron transfer activities in crystalline protein complexes.
    Merli A; Brodersen DE; Morini B; Chen Z; Durley RC; Mathews FS; Davidson VL; Rossi GL
    J Biol Chem; 1996 Apr; 271(16):9177-80. PubMed ID: 8621571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemistry. Remote enzyme microsurgery.
    Bollinger JM; Matthews ML
    Science; 2010 Mar; 327(5971):1337-8. PubMed ID: 20223975
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.