BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19952119)

  • 1. The antiproliferative activity of the heat shock protein 90 inhibitor IPI-504 is not dependent on NAD(P)H:quinone oxidoreductase 1 activity in vivo.
    Douglas M; Lim AR; Porter JR; West K; Pink MM; Ge J; Wylie AA; Tibbits TT; Biggs K; Curtis M; Palombella VJ; Adams J; Fritz CC; Normant E
    Mol Cancer Ther; 2009 Dec; 8(12):3369-78. PubMed ID: 19952119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of 17-allylamino-demethoxygeldanamycin (17-AAG) hydroquinone by NAD(P)H:quinone oxidoreductase 1: role of 17-AAG hydroquinone in heat shock protein 90 inhibition.
    Guo W; Reigan P; Siegel D; Zirrolli J; Gustafson D; Ross D
    Cancer Res; 2005 Nov; 65(21):10006-15. PubMed ID: 16267026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90.
    Sydor JR; Normant E; Pien CS; Porter JR; Ge J; Grenier L; Pak RH; Ali JA; Dembski MS; Hudak J; Patterson J; Penders C; Pink M; Read MA; Sang J; Woodward C; Zhang Y; Grayzel DS; Wright J; Barrett JA; Palombella VJ; Adams J; Tong JK
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17408-13. PubMed ID: 17090671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bioreduction of a series of benzoquinone ansamycins by NAD(P)H:quinone oxidoreductase 1 to more potent heat shock protein 90 inhibitors, the hydroquinone ansamycins.
    Guo W; Reigan P; Siegel D; Zirrolli J; Gustafson D; Ross D
    Mol Pharmacol; 2006 Oct; 70(4):1194-203. PubMed ID: 16825487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role for NAD(P)H:quinone oxidoreductase 1 and manganese-dependent superoxide dismutase in 17-(allylamino)-17-demethoxygeldanamycin-induced heat shock protein 90 inhibition in pancreatic cancer cells.
    Siegel D; Shieh B; Yan C; Kepa JK; Ross D
    J Pharmacol Exp Ther; 2011 Mar; 336(3):874-80. PubMed ID: 21156818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAD(P)H:quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones.
    Siegel D; Yan C; Ross D
    Biochem Pharmacol; 2012 Apr; 83(8):1033-40. PubMed ID: 22209713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NAD(P)H:Quinone Oxidoreductase-1 Expression Sensitizes Malignant Melanoma Cells to the HSP90 Inhibitor 17-AAG.
    Kasai S; Arakawa N; Okubo A; Shigeeda W; Yasuhira S; Masuda T; Akasaka T; Shibazaki M; Maesawa C
    PLoS One; 2016; 11(4):e0153181. PubMed ID: 27045471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antitumor efficacy of IPI-504, a selective heat shock protein 90 inhibitor against human epidermal growth factor receptor 2-positive human xenograft models as a single agent and in combination with trastuzumab or lapatinib.
    Leow CC; Chesebrough J; Coffman KT; Fazenbaker CA; Gooya J; Weng D; Coats S; Jackson D; Jallal B; Chang Y
    Mol Cancer Ther; 2009 Aug; 8(8):2131-41. PubMed ID: 19671750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of NQO1 status as a selective biomarker for oesophageal squamous cell carcinomas with greater sensitivity to 17-AAG.
    Hadley KE; Hendricks DT
    BMC Cancer; 2014 May; 14():334. PubMed ID: 24886060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acquired resistance to 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) in glioblastoma cells.
    Gaspar N; Sharp SY; Pacey S; Jones C; Walton M; Vassal G; Eccles S; Pearson A; Workman P
    Cancer Res; 2009 Mar; 69(5):1966-75. PubMed ID: 19244114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanistic and structural analysis of the inhibition of the 90-kDa heat shock protein by the benzoquinone and hydroquinone ansamycins.
    Reigan P; Siegel D; Guo W; Ross D
    Mol Pharmacol; 2011 May; 79(5):823-32. PubMed ID: 21285336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aryl hydrocarbon receptor is a target of 17-Allylamino-17-demethoxygeldanamycin and enhances its anticancer activity in lung adenocarcinoma cells.
    Chen PH; Chang JT; Li LA; Tsai HT; Shen MY; Lin P
    Mol Pharmacol; 2013 Mar; 83(3):605-12. PubMed ID: 23229511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hsp90 (heat shock protein 90) inhibitor occupancy is a direct determinant of client protein degradation and tumor growth arrest in vivo.
    Tillotson B; Slocum K; Coco J; Whitebread N; Thomas B; West KA; MacDougall J; Ge J; Ali JA; Palombella VJ; Normant E; Adams J; Fritz CC
    J Biol Chem; 2010 Dec; 285(51):39835-43. PubMed ID: 20940293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preclinical antitumor activity of the novel heat shock protein 90 inhibitor CH5164840 against human epidermal growth factor receptor 2 (HER2)-overexpressing cancers.
    Ono N; Yamazaki T; Nakanishi Y; Fujii T; Sakata K; Tachibana Y; Suda A; Hada K; Miura T; Sato S; Saitoh R; Nakano K; Tsukuda T; Mio T; Ishii N; Kondoh O; Aoki Y
    Cancer Sci; 2012 Feb; 103(2):342-9. PubMed ID: 22050138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antitumor activity and molecular effects of the novel heat shock protein 90 inhibitor, IPI-504, in pancreatic cancer.
    Song D; Chaerkady R; Tan AC; García-García E; Nalli A; Suárez-Gauthier A; López-Ríos F; Zhang XF; Solomon A; Tong J; Read M; Fritz C; Jimeno A; Pandey A; Hidalgo M
    Mol Cancer Ther; 2008 Oct; 7(10):3275-84. PubMed ID: 18852131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ganetespib, a unique triazolone-containing Hsp90 inhibitor, exhibits potent antitumor activity and a superior safety profile for cancer therapy.
    Ying W; Du Z; Sun L; Foley KP; Proia DA; Blackman RK; Zhou D; Inoue T; Tatsuta N; Sang J; Ye S; Acquaviva J; Ogawa LS; Wada Y; Barsoum J; Koya K
    Mol Cancer Ther; 2012 Feb; 11(2):475-84. PubMed ID: 22144665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The heat shock protein 90 inhibitor IPI-504 induces KIT degradation, tumor shrinkage, and cell proliferation arrest in xenograft models of gastrointestinal stromal tumors.
    Floris G; Debiec-Rychter M; Wozniak A; Stefan C; Normant E; Faa G; Machiels K; Vanleeuw U; Sciot R; Schöffski P
    Mol Cancer Ther; 2011 Oct; 10(10):1897-908. PubMed ID: 21825009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery and development of heat shock protein 90 inhibitors as anticancer agents: a review of patented potent geldanamycin derivatives.
    Kim T; Keum G; Pae AN
    Expert Opin Ther Pat; 2013 Aug; 23(8):919-43. PubMed ID: 23641970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The heat shock protein 90 inhibitor IPI-504 induces apoptosis of AKT-dependent diffuse large B-cell lymphomas.
    Abramson JS; Chen W; Juszczynski P; Takahashi H; Neuberg D; Kutok JL; Takeyama K; Shipp MA
    Br J Haematol; 2009 Feb; 144(3):358-66. PubMed ID: 19036086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues.
    Sharp SY; Prodromou C; Boxall K; Powers MV; Holmes JL; Box G; Matthews TP; Cheung KM; Kalusa A; James K; Hayes A; Hardcastle A; Dymock B; Brough PA; Barril X; Cansfield JE; Wright L; Surgenor A; Foloppe N; Hubbard RE; Aherne W; Pearl L; Jones K; McDonald E; Raynaud F; Eccles S; Drysdale M; Workman P
    Mol Cancer Ther; 2007 Apr; 6(4):1198-211. PubMed ID: 17431102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.