BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 19952282)

  • 1. Trypanothione efficiently intercepts nitric oxide as a harmless iron complex in trypanosomatid parasites.
    Bocedi A; Dawood KF; Fabrini R; Federici G; Gradoni L; Pedersen JZ; Ricci G
    FASEB J; 2010 Apr; 24(4):1035-42. PubMed ID: 19952282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The parasite-specific trypanothione metabolism of trypanosoma and leishmania.
    Krauth-Siegel RL; Meiering SK; Schmidt H
    Biol Chem; 2003 Apr; 384(4):539-49. PubMed ID: 12751784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei.
    Zimmermann S; Oufir M; Leroux A; Krauth-Siegel RL; Becker K; Kaiser M; Brun R; Hamburger M; Adams M
    Bioorg Med Chem; 2013 Nov; 21(22):7202-9. PubMed ID: 24080104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyamine metabolism in Leishmania: from arginine to trypanothione.
    Colotti G; Ilari A
    Amino Acids; 2011 Feb; 40(2):269-85. PubMed ID: 20512387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione transferases sequester toxic dinitrosyl-iron complexes in cells. A protection mechanism against excess nitric oxide.
    Pedersen JZ; De Maria F; Turella P; Federici G; Mattei M; Fabrini R; Dawood KF; Massimi M; Caccuri AM; Ricci G
    J Biol Chem; 2007 Mar; 282(9):6364-71. PubMed ID: 17197702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting Trypanothione Metabolism in Trypanosomatids.
    González-Montero MC; Andrés-Rodríguez J; García-Fernández N; Pérez-Pertejo Y; Reguera RM; Balaña-Fouce R; García-Estrada C
    Molecules; 2024 May; 29(10):. PubMed ID: 38792079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glyoxalase II does not support methylglyoxal detoxification but serves as a general trypanothione thioesterase in African trypanosomes.
    Wendler A; Irsch T; Rabbani N; Thornalley PJ; Krauth-Siegel RL
    Mol Biochem Parasitol; 2009 Jan; 163(1):19-27. PubMed ID: 18848584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of Trypanosoma brucei trypanothione synthetase as drug target.
    Comini MA; Guerrero SA; Haile S; Menge U; Lünsdorf H; Flohé L
    Free Radic Biol Med; 2004 May; 36(10):1289-302. PubMed ID: 15110394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypanothione-dependent synthesis of deoxyribonucleotides by Trypanosoma brucei ribonucleotide reductase.
    Dormeyer M; Reckenfelderbäumer N; Ludemann H; Krauth-Siegel RL
    J Biol Chem; 2001 Apr; 276(14):10602-6. PubMed ID: 11150302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas' disease, and leishmaniasis.
    Heby O; Persson L; Rentala M
    Amino Acids; 2007 Aug; 33(2):359-66. PubMed ID: 17610127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutathione reductase turned into trypanothione reductase: structural analysis of an engineered change in substrate specificity.
    Stoll VS; Simpson SJ; Krauth-Siegel RL; Walsh CT; Pai EF
    Biochemistry; 1997 May; 36(21):6437-47. PubMed ID: 9174360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification.
    Irigoín F; Cibils L; Comini MA; Wilkinson SR; Flohé L; Radi R
    Free Radic Biol Med; 2008 Sep; 45(6):733-42. PubMed ID: 18588970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trypanothione biosynthesis in Leishmania major.
    Oza SL; Shaw MP; Wyllie S; Fairlamb AH
    Mol Biochem Parasitol; 2005 Jan; 139(1):107-16. PubMed ID: 15610825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and expression of trypanothione reductase from a New World Leishmania species.
    Castro-Pinto DB; Genestra M; Menezes GB; Waghabi M; Gonçalves A; De Nigris Del Cistia C; Sant'Anna CM; Leon LL; Mendonça-Lima L
    Arch Microbiol; 2008 Apr; 189(4):375-84. PubMed ID: 18060667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug target validation of the trypanothione pathway enzymes through metabolic modelling.
    Olin-Sandoval V; González-Chávez Z; Berzunza-Cruz M; Martínez I; Jasso-Chávez R; Becker I; Espinoza B; Moreno-Sánchez R; Saavedra E
    FEBS J; 2012 May; 279(10):1811-33. PubMed ID: 22394478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development.
    Schmidt A; Krauth-Siegel RL
    Curr Top Med Chem; 2002 Nov; 2(11):1239-59. PubMed ID: 12171583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress-Induced Protein S-Glutathionylation and S-Trypanothionylation in African Trypanosomes-A Quantitative Redox Proteome and Thiol Analysis.
    Ulrich K; Finkenzeller C; Merker S; Rojas F; Matthews K; Ruppert T; Krauth-Siegel RL
    Antioxid Redox Signal; 2017 Sep; 27(9):517-533. PubMed ID: 28338335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dithiol glutaredoxins of african trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism.
    Ceylan S; Seidel V; Ziebart N; Berndt C; Dirdjaja N; Krauth-Siegel RL
    J Biol Chem; 2010 Nov; 285(45):35224-37. PubMed ID: 20826822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular studies on trypanothione reductase: an antiparasitic target enzyme.
    Walsh C; Bradley M; Nadeau K
    Curr Top Cell Regul; 1992; 33():409-17. PubMed ID: 1354149
    [No Abstract]   [Full Text] [Related]  

  • 20. Structure-guided approach to identify a novel class of anti-leishmaniasis diaryl sulfide compounds targeting the trypanothione metabolism.
    Colotti G; Saccoliti F; Gramiccia M; Di Muccio T; Prakash J; Yadav S; Dubey VK; Vistoli G; Battista T; Mocci S; Fiorillo A; Bibi A; Madia VN; Messore A; Costi R; Di Santo R; Ilari A
    Amino Acids; 2020 Feb; 52(2):247-259. PubMed ID: 31037461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.