BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 19953085)

  • 1. Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction.
    Saez-Rodriguez J; Alexopoulos LG; Epperlein J; Samaga R; Lauffenburger DA; Klamt S; Sorger PK
    Mol Syst Biol; 2009; 5():331. PubMed ID: 19953085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks.
    Kirouac DC; Saez-Rodriguez J; Swantek J; Burke JM; Lauffenburger DA; Sorger PK
    BMC Syst Biol; 2012 May; 6():29. PubMed ID: 22548703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli.
    Morris MK; Saez-Rodriguez J; Clarke DC; Sorger PK; Lauffenburger DA
    PLoS Comput Biol; 2011 Mar; 7(3):e1001099. PubMed ID: 21408212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete Logic Modelling Optimization to Contextualize Prior Knowledge Networks Using PRUNET.
    Rodriguez A; Crespo I; Fournier A; del Sol A
    PLoS One; 2015; 10(6):e0127216. PubMed ID: 26058016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing signaling networks between normal and transformed hepatocytes using discrete logical models.
    Saez-Rodriguez J; Alexopoulos LG; Zhang M; Morris MK; Lauffenburger DA; Sorger PK
    Cancer Res; 2011 Aug; 71(16):5400-11. PubMed ID: 21742771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boolean regulatory network reconstruction using literature based knowledge with a genetic algorithm optimization method.
    Dorier J; Crespo I; Niknejad A; Liechti R; Ebeling M; Xenarios I
    BMC Bioinformatics; 2016 Oct; 17(1):410. PubMed ID: 27716031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PATHLOGIC-S: a scalable Boolean framework for modelling cellular signalling.
    Fearnley LG; Nielsen LK
    PLoS One; 2012; 7(8):e41977. PubMed ID: 22879903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model integration approach linking signalling and gene-regulatory logic with kinetic metabolic models.
    Ryll A; Bucher J; Bonin A; Bongard S; Gonçalves E; Saez-Rodriguez J; Niklas J; Klamt S
    Biosystems; 2014 Oct; 124():26-38. PubMed ID: 25063553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling protein functional domains in signal transduction using Maude.
    Sriram MG
    Brief Bioinform; 2003 Sep; 4(3):236-45. PubMed ID: 14582518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms.
    Terfve C; Cokelaer T; Henriques D; MacNamara A; Goncalves E; Morris MK; van Iersel M; Lauffenburger DA; Saez-Rodriguez J
    BMC Syst Biol; 2012 Oct; 6():133. PubMed ID: 23079107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of Boolean models exemplified on hepatocyte signal transduction.
    Schlatter R; Philippi N; Wangorsch G; Pick R; Sawodny O; Borner C; Timmer J; Ederer M; Dandekar T
    Brief Bioinform; 2012 May; 13(3):365-76. PubMed ID: 22016404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Rho GTPase Dynamics Using Boolean Logic.
    Hetmanski JHR; Schwartz JM; Caswell PT
    Methods Mol Biol; 2018; 1821():37-46. PubMed ID: 30062403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Converting networks to predictive logic models from perturbation signalling data with CellNOpt.
    Gjerga E; Trairatphisan P; Gabor A; Koch H; Chevalier C; Ceccarelli F; Dugourd A; Mitsos A; Saez-Rodriguez J
    Bioinformatics; 2020 Aug; 36(16):4523-4524. PubMed ID: 32516357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A toolbox for discrete modelling of cell signalling dynamics.
    Paterson YZ; Shorthouse D; Pleijzier MW; Piterman N; Bendtsen C; Hall BA; Fisher J
    Integr Biol (Camb); 2018 Jun; 10(6):370-382. PubMed ID: 29855020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conceptual and computational framework for logical modelling of biological networks deregulated in diseases.
    Montagud A; Traynard P; Martignetti L; Bonnet E; Barillot E; Zinovyev A; Calzone L
    Brief Bioinform; 2019 Jul; 20(4):1238-1249. PubMed ID: 29237040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EpiLog: A software for the logical modelling of epithelial dynamics.
    Varela PL; Ramos CV; Monteiro PT; Chaouiya C
    F1000Res; 2018; 7():1145. PubMed ID: 30363398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A logical model of HIV-1 interactions with the T-cell activation signalling pathway.
    Oyeyemi OJ; Davies O; Robertson DL; Schwartz JM
    Bioinformatics; 2015 Apr; 31(7):1075-83. PubMed ID: 25431332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of cell type-specific logic models of signaling networks using CellNOpt.
    Morris MK; Melas I; Saez-Rodriguez J
    Methods Mol Biol; 2013; 930():179-214. PubMed ID: 23086842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unravelling the complexity of signalling networks in cancer: A review of the increasing role for computational modelling.
    Garland J
    Crit Rev Oncol Hematol; 2017 Sep; 117():73-113. PubMed ID: 28807238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling cellular signalling systems.
    Rangamani P; Iyengar R
    Essays Biochem; 2008; 45():83-94. PubMed ID: 18793125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.