These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19953152)

  • 1. Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides.
    Han J; Abolghasem P; Bijlani BJ; Helmy AS
    Opt Lett; 2009 Dec; 34(23):3656-8. PubMed ID: 19953152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Difference-frequency generation in AlGaAs Bragg reflection waveguides.
    Han JB; Abolghasem P; Kang D; Bijlani BJ; Helmy AS
    Opt Lett; 2010 Jul; 35(14):2334-6. PubMed ID: 20634821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type-0 second order nonlinear interaction in monolithic waveguides of isotropic semiconductors.
    Abolghasem P; Han J; Bijlani BJ; Helmy AS
    Opt Express; 2010 Jun; 18(12):12681-9. PubMed ID: 20588396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous-wave second harmonic generation in Bragg reflection waveguides.
    Abolghasem P; Han J; Bijlani BJ; Arjmand A; Helmy AS
    Opt Express; 2009 May; 17(11):9460-7. PubMed ID: 19466199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nearly-degenerate three-wave mixing at 1.55 μm in oxidized AlGaAs waveguides.
    Savanier M; Andronico A; Lemaître A; Manquest C; Favero I; Ducci S; Leo G
    Opt Express; 2011 Nov; 19(23):22582-7. PubMed ID: 22109137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved cascaded sum and difference frequency generation-based wavelength converters in low-loss quasi-phase-matched lithium niobate waveguides.
    Tehranchi A; Kashyap R
    Appl Opt; 2009 Nov; 48(31):G143-7. PubMed ID: 19881636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Second harmonic generation in AlGaAs photonic wires using low power continuous wave light.
    Duchesne D; Rutkowska KA; Volatier M; Légaré F; Delprat S; Chaker M; Modotto D; Locatelli A; De Angelis C; Sorel M; Christodoulides DN; Salamo G; Arès R; Aimez V; Morandotti R
    Opt Express; 2011 Jun; 19(13):12408-17. PubMed ID: 21716479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Widely tunable frequency conversion in monolithic semiconductor waveguides at 2.4  μm.
    Abolghasem P; Kang D; Logan DF; Lungwitz M; Helmy AS
    Opt Lett; 2014 Jun; 39(12):3591-4. PubMed ID: 24978544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient four wave mixing in GaInP photonic crystal waveguides.
    Eckhouse V; Cestier I; Eisenstein G; Combrié S; Colman P; De Rossi A; Santagiustina M; Someda CG; Vadalà G
    Opt Lett; 2010 May; 35(9):1440-2. PubMed ID: 20436596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides.
    Apiratikul P; Wathen JJ; Porkolab GA; Wang B; He L; Murphy TE; Richardson CJ
    Opt Express; 2014 Nov; 22(22):26814-24. PubMed ID: 25401828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of polarization entangled photons using concurrent type-I and type-0 processes in AlGaAs ridge waveguides.
    Kang D; Helmy AS
    Opt Lett; 2012 May; 37(9):1481-3. PubMed ID: 22555711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient wavelength converters with flattop responses based on counterpropagating cascaded SFG and DFG in low-loss QPM LiNbO3 waveguides.
    Tehranchi A; Kashyap R
    Opt Express; 2009 Oct; 17(21):19113-9. PubMed ID: 20372648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AlxGa1-xAs nested waveguide heterostructures for continuously phase-matched terahertz difference frequency generation.
    Staus CM; Kuech TF; McCaughan L
    Opt Express; 2010 Feb; 18(3):2332-8. PubMed ID: 20174063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chip-scale, telecommunications-band frequency conversion interface for quantum emitters.
    Agha I; Ates S; Davanço M; Srinivasan K
    Opt Express; 2013 Sep; 21(18):21628-38. PubMed ID: 24104037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mid-infrared difference-frequency generation in suspended GaAs waveguides.
    Stievater TH; Mahon R; Park D; Rabinovich WS; Pruessner MW; Khurgin JB; Richardson CJ
    Opt Lett; 2014 Feb; 39(4):945-8. PubMed ID: 24562248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.
    Wang KY; Foster AC
    Opt Lett; 2012 Apr; 37(8):1331-3. PubMed ID: 22513676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO(3) waveguides.
    Matteo AM; Tsai CS; Do N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):16-28. PubMed ID: 18238514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrabroadband midinfrared generation by using group-velocity-dispersion tailoring in a Bragg reflection waveguide for a difference-frequency-generation process.
    Das R; Thyagarajan K
    Appl Opt; 2009 Oct; 48(30):5678-82. PubMed ID: 19844300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase matching in monolithic Bragg reflection waveguides.
    Helmy AS; Bijlani B; Abolghasem P
    Opt Lett; 2007 Aug; 32(16):2399-401. PubMed ID: 17700798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient second harmonic generation in hyperbolic metamaterial slot waveguides with large phase matching tolerance.
    Sun Y; Zheng Z; Cheng J; Sun G; Qiao G
    Opt Express; 2015 Mar; 23(5):6370-8. PubMed ID: 25836857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.