These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19953510)

  • 1. Quantification of punctate iron sources using magnetic resonance phase.
    McAuley G; Schrag M; Sipos P; Sun SW; Obenaus A; Neelavalli J; Haacke EM; Holshouser B; Madácsi R; Kirsch W
    Magn Reson Med; 2010 Jan; 63(1):106-15. PubMed ID: 19953510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo iron quantification in collagenase-induced microbleeds in rat brain.
    McAuley G; Schrag M; Barnes S; Obenaus A; Dickson A; Kirsch W
    Magn Reson Med; 2012 Mar; 67(3):711-7. PubMed ID: 21721041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic field correlation imaging.
    Jensen JH; Chandra R; Ramani A; Lu H; Johnson G; Lee SP; Kaczynski K; Helpern JA
    Magn Reson Med; 2006 Jun; 55(6):1350-61. PubMed ID: 16700026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the utility of spectroscopic imaging as a tool for generating geometrically accurate MR images and parameter maps in the presence of field inhomogeneities and chemical shift effects.
    Bakker CJ; de Leeuw H; van de Maat GH; van Gorp JS; Bouwman JG; Seevinck PR
    Magn Reson Imaging; 2013 Jan; 31(1):86-95. PubMed ID: 22898694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron quantification of microbleeds in postmortem brain.
    McAuley G; Schrag M; Barnes S; Obenaus A; Dickson A; Holshouser B; Kirsch W
    Magn Reson Med; 2011 Jun; 65(6):1592-601. PubMed ID: 21590801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of detection sensitivity for cerebral microbleeds using susceptibility-weighted imaging.
    Buch S; Cheng YN; Hu J; Liu S; Beaver J; Rajagovindan R; Haacke EM
    NMR Biomed; 2017 Apr; 30(4):. PubMed ID: 27206271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging.
    de Rochefort L; Liu T; Kressler B; Liu J; Spincemaille P; Lebon V; Wu J; Wang Y
    Magn Reson Med; 2010 Jan; 63(1):194-206. PubMed ID: 19953507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Susceptibility weighted imaging at ultra high magnetic field strengths: theoretical considerations and experimental results.
    Deistung A; Rauscher A; Sedlacik J; Stadler J; Witoszynskyj S; Reichenbach JR
    Magn Reson Med; 2008 Nov; 60(5):1155-68. PubMed ID: 18956467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fat and iron quantification in the liver: past, present, and future.
    Yokoo T; Browning JD
    Top Magn Reson Imaging; 2014 Apr; 23(2):73-94. PubMed ID: 24690618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multispectral quantitative magnetic resonance imaging of brain iron stores: a theoretical perspective.
    Jara H; Sakai O; Mankal P; Irving RP; Norbash AM
    Top Magn Reson Imaging; 2006 Feb; 17(1):19-30. PubMed ID: 17179894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BSLIM: spectral localization by imaging with explicit B0 field inhomogeneity compensation.
    Khalidov I; Van De Ville D; Jacob M; Lazeyras F; Unser M
    IEEE Trans Med Imaging; 2007 Jul; 26(7):990-1000. PubMed ID: 17649912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid magnetic resonance quantification on the brain: Optimization for clinical usage.
    Warntjes JB; Leinhard OD; West J; Lundberg P
    Magn Reson Med; 2008 Aug; 60(2):320-9. PubMed ID: 18666127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral microbleeds: accelerated 3D T2*-weighted GRE MR imaging versus conventional 2D T2*-weighted GRE MR imaging for detection.
    Vernooij MW; Ikram MA; Wielopolski PA; Krestin GP; Breteler MM; van der Lugt A
    Radiology; 2008 Jul; 248(1):272-7. PubMed ID: 18490493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated phase correction via maximization of the real signal.
    Hardy EH; Hoferer J; Mertens D; Kasper G
    Magn Reson Imaging; 2009 Apr; 27(3):393-400. PubMed ID: 18760554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-invasive liver iron concentration measurement by MRI: comparison of two validated protocols.
    Olthof AW; Sijens PE; Kreeftenberg HG; Kappert P; van der Jagt EJ; Oudkerk M
    Eur J Radiol; 2009 Jul; 71(1):116-21. PubMed ID: 18358658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fast wavelet-based reconstruction method for magnetic resonance imaging.
    Guerquin-Kern M; Häberlin M; Pruessmann KP; Unser M
    IEEE Trans Med Imaging; 2011 Sep; 30(9):1649-60. PubMed ID: 21478074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Susceptibility-weighted MRI of endometrioma: preliminary results.
    Takeuchi M; Matsuzaki K; Nishitani H
    AJR Am J Roentgenol; 2008 Nov; 191(5):1366-70. PubMed ID: 18941070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2D harmonic filtering of MR phase images in multicenter clinical setting: toward a magnetic signature of cerebral microbleeds.
    Kaaouana T; de Rochefort L; Samaille T; Thiery N; Dufouil C; Delmaire C; Dormont D; Chupin M
    Neuroimage; 2015 Jan; 104():287-300. PubMed ID: 25149849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Undersampling to acquire nuclear magnetic resonance images.
    Pérez P; Santos A
    Med Eng Phys; 2004 Jul; 26(6):523-9. PubMed ID: 15234688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of brain iron concentration in vivo using a linear relationship between regional iron and apparent transverse relaxation rate of the tissue water at 4.7T.
    Mitsumori F; Watanabe H; Takaya N
    Magn Reson Med; 2009 Nov; 62(5):1326-30. PubMed ID: 19780172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.