BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 19953538)

  • 1. Hydroxyapatite affinity chromatography for the highly selective enrichment of mono- and multi-phosphorylated peptides in phosphoproteome analysis.
    Mamone G; Picariello G; Ferranti P; Addeo F
    Proteomics; 2010 Feb; 10(3):380-93. PubMed ID: 19953538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enrichment and separation of mono- and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis.
    Thingholm TE; Jensen ON; Larsen MR
    Methods Mol Biol; 2009; 527():67-78, xi. PubMed ID: 19241006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential Elution from IMAC (SIMAC): An Efficient Method for Enrichment and Separation of Mono- and Multi-phosphorylated Peptides.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():147-60. PubMed ID: 26584924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis.
    Zhou H; Ye M; Dong J; Han G; Jiang X; Wu R; Zou H
    J Proteome Res; 2008 Sep; 7(9):3957-67. PubMed ID: 18630941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of phosphopeptide enrichment techniques for phosphoproteome analysis.
    Han G; Ye M; Zou H
    Analyst; 2008 Sep; 133(9):1128-38. PubMed ID: 18709185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoprobe-based immobilized metal affinity chromatography for sensitive and complementary enrichment of multiply phosphorylated peptides.
    Wu HT; Hsu CC; Tsai CF; Lin PC; Lin CC; Chen YJ
    Proteomics; 2011 Jul; 11(13):2639-53. PubMed ID: 21630456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis.
    Kweon HK; Håkansson K
    Anal Chem; 2006 Mar; 78(6):1743-9. PubMed ID: 16536406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient enrichment of phosphopeptides by magnetic nanoparticles coated with zirconium phosphonate for phosphoproteome analysis.
    Wei J; Zhang Y; Wang J; Tan F; Liu J; Cai Y; Qian X
    Rapid Commun Mass Spectrom; 2008 Apr; 22(7):1069-80. PubMed ID: 18327884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis.
    Zhou H; Tian R; Ye M; Xu S; Feng S; Pan C; Jiang X; Li X; Zou H
    Electrophoresis; 2007 Jul; 28(13):2201-15. PubMed ID: 17539039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques.
    Jensen SS; Larsen MR
    Rapid Commun Mass Spectrom; 2007; 21(22):3635-45. PubMed ID: 17939157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic identification of phosphopeptides using immobilized metal ion affinity chromatography enrichment, subsequent partial beta-elimination/chemical tagging and matrix-assisted laser desorption/ionization mass spectrometric analysis.
    Ahn YH; Park EJ; Cho K; Kim JY; Ha SH; Ryu SH; Yoo JS
    Rapid Commun Mass Spectrom; 2004; 18(20):2495-501. PubMed ID: 15384178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrophilic interaction chromatography for fractionation and enrichment of the phosphoproteome.
    McNulty DE; Annan RS
    Methods Mol Biol; 2009; 527():93-105, x. PubMed ID: 19241008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of protein phosphorylation by monolithic extraction columns based on poly(divinylbenzene) containing embedded titanium dioxide and zirconium dioxide nano-powders.
    Rainer M; Sonderegger H; Bakry R; Huck CW; Morandell S; Huber LA; Gjerde DT; Bonn GK
    Proteomics; 2008 Nov; 8(21):4593-602. PubMed ID: 18837466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis.
    Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X
    J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis.
    Kokubu M; Ishihama Y; Sato T; Nagasu T; Oda Y
    Anal Chem; 2005 Aug; 77(16):5144-54. PubMed ID: 16097752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography.
    Han G; Ye M; Zhou H; Jiang X; Feng S; Jiang X; Tian R; Wan D; Zou H; Gu J
    Proteomics; 2008 Apr; 8(7):1346-61. PubMed ID: 18318008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enrichment of phosphopeptides using biphasic immobilized metal affinity-reversed phase microcolumns.
    Schilling M; Knapp DR
    J Proteome Res; 2008 Sep; 7(9):4164-72. PubMed ID: 18642943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster.
    Pinkse MW; Mohammed S; Gouw JW; van Breukelen B; Vos HR; Heck AJ
    J Proteome Res; 2008 Feb; 7(2):687-97. PubMed ID: 18034456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography.
    Kyono Y; Sugiyama N; Imami K; Tomita M; Ishihama Y
    J Proteome Res; 2008 Oct; 7(10):4585-93. PubMed ID: 18767875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized IMAC-IMAC protocol for phosphopeptide recovery from complex biological samples.
    Ye J; Zhang X; Young C; Zhao X; Hao Q; Cheng L; Jensen ON
    J Proteome Res; 2010 Jul; 9(7):3561-73. PubMed ID: 20450229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.