These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19953840)

  • 1. Feasibility of an activity protocol for young children in a whole room indirect calorimeter: a proof-of-concept study.
    Oortwijn AW; Plasqui G; Reilly JJ; Okely AD
    J Phys Act Health; 2009 Sep; 6(5):633-7. PubMed ID: 19953840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of the ActiGraph two-regression model for predicting energy expenditure.
    Rothney MP; Brychta RJ; Meade NN; Chen KY; Buchowski MS
    Med Sci Sports Exerc; 2010 Sep; 42(9):1785-92. PubMed ID: 20142778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of energy expenditure in a whole body indirect calorimeter at both low and high levels of physical activity.
    de Jonge L; Nguyen T; Smith SR; Zachwieja JJ; Roy HJ; Bray GA
    Int J Obes Relat Metab Disord; 2001 Jul; 25(7):929-34. PubMed ID: 11443488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of three accelerometry-based devices for estimating energy expenditure in adults and children with cerebral palsy.
    Ryan JM; Walsh M; Gormley J
    J Neuroeng Rehabil; 2014 Aug; 11():116. PubMed ID: 25097005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive validity and classification accuracy of ActiGraph energy expenditure equations and cut-points in young children.
    Janssen X; Cliff DP; Reilly JJ; Hinkley T; Jones RA; Batterham M; Ekelund U; Brage S; Okely AD
    PLoS One; 2013; 8(11):e79124. PubMed ID: 24244433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative validity of 3 accelerometer models for estimating energy expenditure during light activity.
    Wetten AA; Batterham M; Tan SY; Tapsell L
    J Phys Act Health; 2014 Mar; 11(3):638-47. PubMed ID: 23417054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing ActiGraph equations for estimating energy expenditure in older adults.
    Aguilar-Farias N; Peeters GMEEG; Brychta RJ; Chen KY; Brown WJ
    J Sports Sci; 2019 Jan; 37(2):188-195. PubMed ID: 29912666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of energy expenditure measurements by a new basic respiratory room vs. classical ventilated hood.
    Van Soom T; Tjalma W; Van Daele U; Gebruers N; van Breda E
    Nutr J; 2023 Dec; 22(1):72. PubMed ID: 38114986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of fat mass in prepubertal children.
    Müller MJ; Grund A; Krause H; Siewers M; Bosy-Westphal A; Rieckert H
    Br J Nutr; 2002 Nov; 88(5):545-54. PubMed ID: 12425735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracmor system for measuring walking energy expenditure.
    Levine J; Melanson EL; Westerterp KR; Hill JO
    Eur J Clin Nutr; 2003 Sep; 57(9):1176-80. PubMed ID: 12947439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Caltrac versus calorimeter determination of 24-h energy expenditure in female children and adolescents.
    Bray MS; Wong WW; Morrow JR; Butte NF; Pivarnik JM
    Med Sci Sports Exerc; 1994 Dec; 26(12):1524-30. PubMed ID: 7869888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation and calibration of physical activity monitors in children.
    Puyau MR; Adolph AL; Vohra FA; Butte NF
    Obes Res; 2002 Mar; 10(3):150-7. PubMed ID: 11886937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actigraph GT3X: validation and determination of physical activity intensity cut points.
    Santos-Lozano A; Santín-Medeiros F; Cardon G; Torres-Luque G; Bailón R; Bergmeir C; Ruiz JR; Lucia A; Garatachea N
    Int J Sports Med; 2013 Nov; 34(11):975-82. PubMed ID: 23700330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a two-regression model for estimating energy expenditure in children.
    Crouter SE; Horton M; Bassett DR
    Med Sci Sports Exerc; 2012 Jun; 44(6):1177-85. PubMed ID: 22143114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Chinese children and youth's energy expenditure using ActiGraph accelerometers: a calibration and cross-validation study.
    Zhu Z; Chen P; Zhuang J
    Res Q Exerc Sport; 2013 Dec; 84 Suppl 2():S56-63. PubMed ID: 24527567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity diary method for predicting energy expenditure as evaluated by a whole-body indirect human calorimeter.
    Yamamura C; Tanaka S; Futami J; Oka J; Ishikawa-Takata K; Kashiwazaki H
    J Nutr Sci Vitaminol (Tokyo); 2003 Aug; 49(4):262-9. PubMed ID: 14598913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting energy expenditure from accelerometry counts in adolescent girls.
    Schmitz KH; Treuth M; Hannan P; McMurray R; Ring KB; Catellier D; Pate R
    Med Sci Sports Exerc; 2005 Jan; 37(1):155-61. PubMed ID: 15632682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring Energy Expenditure in extracorporeal lung support Patients (MEEP) - Protocol, feasibility and pilot trial.
    Wollersheim T; Frank S; Müller MC; Skrypnikov V; Carbon NM; Pickerodt PA; Spies C; Mai K; Spranger J; Weber-Carstens S
    Clin Nutr; 2018 Feb; 37(1):301-307. PubMed ID: 28143666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.