BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 19954161)

  • 41. Peak splitting in the CE separation of enantiomers caused by organic solvents in the sample.
    Stapf FI; Oehme M; Kiessig S; Schwarz MA; Kálmán F
    Electrophoresis; 2007 Oct; 28(20):3625-38. PubMed ID: 17941130
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of capillary zone electrophoresis for separation of water-soluble gold monolayer-protected clusters.
    Lo CK; Paau MC; Xiao D; Choi MM
    Electrophoresis; 2008 Jun; 29(11):2330-9. PubMed ID: 18435492
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Repartition effect of aromatic polyaniline coatings on the separation of bioactive peptides in capillary electrophoresis.
    Bossi A; Piletsky SA; Turner AP; Righetti PG
    Electrophoresis; 2002 Jan; 23(2):203-8. PubMed ID: 11840524
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The use of light scattering for precise characterization of polymers for DNA sequencing by capillary electrophoresis.
    Buchholz BA; Barron AE
    Electrophoresis; 2001 Nov; 22(19):4118-28. PubMed ID: 11824632
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrokinetic separation of peptides and proteins using a polyvinylamine-coated capillary with UV and ESI-MS detection.
    Wu Y; Xie J; Wang F; Chen Z
    J Sep Sci; 2008 Mar; 31(5):814-23. PubMed ID: 18293421
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nonaqueous capillary electrophoresis with alcoholic background electrolytes: separation efficiency under high electrical field strengths.
    Palonen S; Jussila M; Porras SP; Hyötyläinen T; Riekkola ML
    Electrophoresis; 2002 Feb; 23(3):393-9. PubMed ID: 11870738
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Capillary electrophoresis with end-capillary potentiometric detection using a copper electrode.
    Macka M; Gerhardt G; Andersson P; Bogan D; Cassidy RM; Haddad PR
    Electrophoresis; 1999 Sep; 20(12):2539-46. PubMed ID: 10499348
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Capillary electrophoresis combined with 252Cf plasma desorption and electrospray mass spectrometry for the structural characterization of hydrophobic polypeptides using organic solvents.
    Weinmann W; Parker CE; Baumeister K; Maier C; Tomer KB; Przybylski M
    Electrophoresis; 1994 Feb; 15(2):228-33. PubMed ID: 8026439
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative analysis in capillary electrophoresis: transformation of raw electropherograms into continuous distributions.
    Chamieh J; Martin M; Cottet H
    Anal Chem; 2015 Jan; 87(2):1050-7. PubMed ID: 25569334
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of carboxylated nanolatexes by capillary electrophoresis.
    Oukacine F; Morel A; Cottet H
    Langmuir; 2011 Apr; 27(7):4040-7. PubMed ID: 21344892
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determination of homopolypeptide conformational changes by the modeling of electrophoretic mobilities.
    Plasson R; Cottet H
    Anal Chem; 2005 Sep; 77(18):6047-54. PubMed ID: 16159140
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unaided trifluoroacetic acid pretreatment solubilizes polyglutamine peptides and retains their biophysical properties of aggregation.
    Burra G; Thakur AK
    Anal Biochem; 2016 Feb; 494():23-30. PubMed ID: 26514067
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Separation of poly(acrylic acid) salts according to topology using capillary electrophoresis in the critical conditions.
    Maniego AR; Ang D; Guillaneuf Y; Lefay C; Gigmes D; Aldrich-Wright JR; Gaborieau M; Castignolles P
    Anal Bioanal Chem; 2013 Nov; 405(28):9009-20. PubMed ID: 23732867
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multimodal switching of conformation and solubility in homocysteine derived polypeptides.
    Kramer JR; Deming TJ
    J Am Chem Soc; 2014 Apr; 136(15):5547-50. PubMed ID: 24694061
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A capillary electrophoresis strategy to sensitively detect dynamic properties of coiled coil polypeptides.
    Yang J; Zhao SD; Zhao DH; Huang Y; Liu XX; Hu W; Liu B
    J Sep Sci; 2020 Jun; 43(11):2201-2208. PubMed ID: 32112673
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sequence-Controlled Secondary Structures and Stimuli Responsiveness of Bioinspired Polyampholytes.
    Dinic J; Schnorenberg MR; Tirrell MV
    Biomacromolecules; 2022 Sep; 23(9):3798-3809. PubMed ID: 35969881
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hexafluoroisopropanol: a powerful solvent for the hydrogenation of indole derivatives. Selective access to tetrahydroindoles or cis-fused octahydroindoles.
    Clarisse D; Fenet B; Fache F
    Org Biomol Chem; 2012 Aug; 10(32):6587-94. PubMed ID: 22782846
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nuclear magnetic resonance studies of poly-DL-alanine and poly-L-alanine in solvents with strong acids.
    Tam JW; Klotz IM
    J Am Chem Soc; 1971 Mar; 93(5):1313-5. PubMed ID: 5545930
    [No Abstract]   [Full Text] [Related]  

  • 59. Chemical synthesis of a homoserine-mutant of the antibacterial, head-to-tail cyclized protein AS-48 by α-ketoacid-hydroxylamine (KAHA) ligation.
    Rohrbacher F; Zwicky A; Bode JW
    Chem Sci; 2017 May; 8(5):4051-4055. PubMed ID: 28580120
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Partial molar rotatory powers and optical activity in proteins and polypeptides, ii. The alpha-helix of poly-L-alanine.
    Urry DW
    Proc Natl Acad Sci U S A; 1968 Aug; 60(4):1114-21. PubMed ID: 16591669
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.