These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1308 related articles for article (PubMed ID: 19954162)
21. Evaporative properties and pinning strength of laser-ablated, hydrophilic sites on lotus-leaf-like, nanostructured surfaces. McLauchlin ML; Yang D; Aella P; Garcia AA; Picraux ST; Hayes MA Langmuir; 2007 Apr; 23(9):4871-7. PubMed ID: 17381139 [TBL] [Abstract][Full Text] [Related]
22. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
23. Effect of surface wettability on the adhesion of proteins. Sethuraman A; Han M; Kane RS; Belfort G Langmuir; 2004 Aug; 20(18):7779-88. PubMed ID: 15323531 [TBL] [Abstract][Full Text] [Related]
24. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films. Saison T; Peroz C; Chauveau V; Berthier S; Sondergard E; Arribart H Bioinspir Biomim; 2008 Dec; 3(4):046004. PubMed ID: 18812652 [TBL] [Abstract][Full Text] [Related]
29. Fabrication, surface properties, and origin of superoleophobicity for a model textured surface. Zhao H; Law KY; Sambhy V Langmuir; 2011 May; 27(10):5927-35. PubMed ID: 21486088 [TBL] [Abstract][Full Text] [Related]
30. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces. Han JT; Kim S; Karim A Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808 [TBL] [Abstract][Full Text] [Related]
31. Recent Advances in TiO2 -Based Nanostructured Surfaces with Controllable Wettability and Adhesion. Lai Y; Huang J; Cui Z; Ge M; Zhang KQ; Chen Z; Chi L Small; 2016 Apr; 12(16):2203-24. PubMed ID: 26695122 [TBL] [Abstract][Full Text] [Related]
32. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces. Lee H; Bhushan B J Colloid Interface Sci; 2012 Apr; 372(1):231-8. PubMed ID: 22285098 [TBL] [Abstract][Full Text] [Related]
33. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Yan YY; Gao N; Barthlott W Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918 [TBL] [Abstract][Full Text] [Related]
34. Formation of superhydrophobic surfaces by biomimetic silicification and fluorination. Cho WK; Kang SM; Kim DJ; Yang SH; Choi IS Langmuir; 2006 Dec; 22(26):11208-13. PubMed ID: 17154605 [TBL] [Abstract][Full Text] [Related]
35. Superhydrophobic surfaces: from natural to biomimetic to functional. Guo Z; Liu W; Su BL J Colloid Interface Sci; 2011 Jan; 353(2):335-55. PubMed ID: 20846662 [TBL] [Abstract][Full Text] [Related]
36. Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays. Li Y; Huang XJ; Heo SH; Li CC; Choi YK; Cai WP; Cho SO Langmuir; 2007 Feb; 23(4):2169-74. PubMed ID: 17279709 [TBL] [Abstract][Full Text] [Related]
37. Adhesion behaviors of water droplets on bioinspired superhydrophobic surfaces. Xu P; Zhang Y; Li L; Lin Z; Zhu B; Chen W; Li G; Liu H; Xiao K; Xiong Y; Yang S; Lei Y; Xue L Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35561670 [TBL] [Abstract][Full Text] [Related]
38. Packing the silica colloidal crystal beads: a facile route to superhydrophobic surfaces. Sun C; Gu ZZ; Xu H Langmuir; 2009 Nov; 25(21):12439-43. PubMed ID: 19785469 [TBL] [Abstract][Full Text] [Related]