These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1308 related articles for article (PubMed ID: 19954162)
41. Nanostructure-dependent water-droplet adhesiveness change in superhydrophobic anodic aluminum oxide surfaces: from highly adhesive to self-cleanable. Lee W; Park BG; Kim DH; Ahn DJ; Park Y; Lee SH; Lee KB Langmuir; 2010 Feb; 26(3):1412-5. PubMed ID: 20039661 [TBL] [Abstract][Full Text] [Related]
42. Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights. Choi CH; Kim CJ Langmuir; 2009 Jul; 25(13):7561-7. PubMed ID: 19518098 [TBL] [Abstract][Full Text] [Related]
43. Thermodynamic analysis of the wetting behavior of dual scale patterned hydrophobic surfaces. Sajadinia SH; Sharif F J Colloid Interface Sci; 2010 Apr; 344(2):575-83. PubMed ID: 20132948 [TBL] [Abstract][Full Text] [Related]
44. Bioinspired colloidal photonic crystals with controllable wettability. Wang J; Zhang Y; Wang S; Song Y; Jiang L Acc Chem Res; 2011 Jun; 44(6):405-15. PubMed ID: 21401081 [TBL] [Abstract][Full Text] [Related]
45. Learning from superhydrophobic plants: the use of hydrophilic areas on superhydrophobic surfaces for droplet control. Shirtcliffe NJ; McHale G; Newton MI Langmuir; 2009 Dec; 25(24):14121-8. PubMed ID: 20560556 [TBL] [Abstract][Full Text] [Related]
46. Superhydrophobic states. Lafuma A; Quéré D Nat Mater; 2003 Jul; 2(7):457-60. PubMed ID: 12819775 [TBL] [Abstract][Full Text] [Related]
47. Analysis of droplet evaporation on a superhydrophobic surface. McHale G; Aqil S; Shirtcliffe NJ; Newton MI; Erbil HY Langmuir; 2005 Nov; 21(24):11053-60. PubMed ID: 16285771 [TBL] [Abstract][Full Text] [Related]
48. One pot synthesis of opposing 'rose petal' and 'lotus leaf' superhydrophobic materials with zinc oxide nanorods. Myint MT; Hornyak GL; Dutta J J Colloid Interface Sci; 2014 Feb; 415():32-8. PubMed ID: 24267327 [TBL] [Abstract][Full Text] [Related]
49. Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Jung YC; Bhushan B Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153 [TBL] [Abstract][Full Text] [Related]
50. Peanut leaf inspired multifunctional surfaces. Yang S; Ju J; Qiu Y; He Y; Wang X; Dou S; Liu K; Jiang L Small; 2014 Jan; 10(2):294-9. PubMed ID: 23908145 [TBL] [Abstract][Full Text] [Related]
51. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation. Su X; Li H; Lai X; Zhang L; Liao X; Wang J; Chen Z; He J; Zeng X ACS Appl Mater Interfaces; 2018 Jan; 10(4):4213-4221. PubMed ID: 29323869 [TBL] [Abstract][Full Text] [Related]
52. Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Nosonovsky M Langmuir; 2007 Mar; 23(6):3157-61. PubMed ID: 17295522 [TBL] [Abstract][Full Text] [Related]
53. Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Nosonovsky M; Bhushan B Ultramicroscopy; 2007 Oct; 107(10-11):969-79. PubMed ID: 17570591 [TBL] [Abstract][Full Text] [Related]
54. Bioinspired design of honeycomb structure interfaces with controllable water adhesion. Heng L; Meng X; Wang B; Jiang L Langmuir; 2013 Jul; 29(30):9491-8. PubMed ID: 23834708 [TBL] [Abstract][Full Text] [Related]
55. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon. Zhu L; Xiu Y; Xu J; Tamirisa PA; Hess DW; Wong CP Langmuir; 2005 Nov; 21(24):11208-12. PubMed ID: 16285792 [TBL] [Abstract][Full Text] [Related]
56. Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route. Wu X; Zheng L; Wu D Langmuir; 2005 Mar; 21(7):2665-7. PubMed ID: 15779932 [TBL] [Abstract][Full Text] [Related]
57. A bioinspired wet/dry microfluidic adhesive for aqueous environments. Majumder A; Sharma A; Ghatak A Langmuir; 2010 Jan; 26(1):521-5. PubMed ID: 20038181 [TBL] [Abstract][Full Text] [Related]
58. Molecular design of conductive polymers to modulate superoleophobic properties. Darmanin T; Guittard F J Am Chem Soc; 2009 Jun; 131(22):7928-33. PubMed ID: 19453180 [TBL] [Abstract][Full Text] [Related]
59. Fabrication of superhydrophobic films with robust adhesion and dual pinning state via in situ polymerization. Raza A; Si Y; Ding B; Yu J; Sun G J Colloid Interface Sci; 2013 Apr; 395():256-62. PubMed ID: 23245890 [TBL] [Abstract][Full Text] [Related]
60. Spatial variations and temporal metastability of the self-cleaning and superhydrophobic properties of damselfly wings. Hasan J; Webb HK; Truong VK; Watson GS; Watson JA; Tobin MJ; Gervinskas G; Juodkazis S; Wang JY; Crawford RJ; Ivanova EP Langmuir; 2012 Dec; 28(50):17404-9. PubMed ID: 23181510 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]