These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19954519)

  • 61. Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at Saccharomyces telomeres.
    Wiley EA; Zakian VA
    Genetics; 1995 Jan; 139(1):67-79. PubMed ID: 7705652
    [TBL] [Abstract][Full Text] [Related]  

  • 62. RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae.
    Kyrion G; Liu K; Liu C; Lustig AJ
    Genes Dev; 1993 Jul; 7(7A):1146-59. PubMed ID: 8319907
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular dynamics of de novo telomere heterochromatin formation in budding yeast.
    Duan YM; Zhou BO; Peng J; Tong XJ; Zhang QD; Zhou JQ
    J Genet Genomics; 2016 Jul; 43(7):451-65. PubMed ID: 27477026
    [TBL] [Abstract][Full Text] [Related]  

  • 64. SIR proteins and the assembly of silent chromatin in budding yeast.
    Kueng S; Oppikofer M; Gasser SM
    Annu Rev Genet; 2013; 47():275-306. PubMed ID: 24016189
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Heterochromatin organization of a natural yeast telomere. Recruitment of Sir3p through interaction with histone H4 N terminus is required for the establishment of repressive structures.
    Venditti S; Vega-Palas MA; Di Mauro E
    J Biol Chem; 1999 Jan; 274(4):1928-33. PubMed ID: 9890947
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Gene activation at a distance and telomeric silencing are not affected by yeast histone H1.
    Escher D; Schaffner W
    Mol Gen Genet; 1997 Oct; 256(4):456-61. PubMed ID: 9393443
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Saccharomyces telomeres assume a non-nucleosomal chromatin structure.
    Wright JH; Gottschling DE; Zakian VA
    Genes Dev; 1992 Feb; 6(2):197-210. PubMed ID: 1737616
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A core nucleosome surface crucial for transcriptional silencing.
    Park JH; Cosgrove MS; Youngman E; Wolberger C; Boeke JD
    Nat Genet; 2002 Oct; 32(2):273-9. PubMed ID: 12244315
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae.
    Dror V; Winston F
    Mol Cell Biol; 2004 Sep; 24(18):8227-35. PubMed ID: 15340082
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Acetylation and accessibility of rDNA chromatin in Saccharomyces cerevisiae in (Delta)top1 and (Delta)sir2 mutants.
    Cioci F; Vogelauer M; Camilloni G
    J Mol Biol; 2002 Sep; 322(1):41-52. PubMed ID: 12215413
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Structural analyses of Sum1-1p-dependent transcriptionally silent chromatin in Saccharomyces cerevisiae.
    Yu Q; Elizondo S; Bi X
    J Mol Biol; 2006 Mar; 356(5):1082-92. PubMed ID: 16406069
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Sir2 and Reb1 antagonistically regulate nucleosome occupancy in subtelomeric X-elements and repress TERRAs by distinct mechanisms.
    Bauer SL; Grochalski TNT; Smialowska A; Åström SU
    PLoS Genet; 2022 Sep; 18(9):e1010419. PubMed ID: 36137093
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Architecture, Chromatin and Gene Organization of
    Contreras SM; Zambrano Siri RT; Rivera EM; Cristaldi C; Kamenetzky L; Kim K; Clemente M; Ocampo J; Vanagas L; Angel SO
    Epigenomes; 2022 Sep; 6(3):. PubMed ID: 36135316
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In vivo chromatin organization on native yeast telomeric regions is independent of a cis-telomere loopback conformation.
    Pasquier E; Wellinger RJ
    Epigenetics Chromatin; 2020 May; 13(1):23. PubMed ID: 32443982
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The histone methyltransferases Set5 and Set1 have overlapping functions in gene silencing and telomere maintenance.
    Jezek M; Gast A; Choi G; Kulkarni R; Quijote J; Graham-Yooll A; Park D; Green EM
    Epigenetics; 2017 Feb; 12(2):93-104. PubMed ID: 27911222
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation.
    Thurtle-Schmidt DM; Dodson AE; Rine J
    Genetics; 2016 Sep; 204(1):177-90. PubMed ID: 27489001
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The Chromatin and Transcriptional Landscape of Native Saccharomyces cerevisiae Telomeres and Subtelomeric Domains.
    Ellahi A; Thurtle DM; Rine J
    Genetics; 2015 Jun; 200(2):505-21. PubMed ID: 25823445
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The molecular topography of silenced chromatin in Saccharomyces cerevisiae.
    Thurtle DM; Rine J
    Genes Dev; 2014 Feb; 28(3):245-58. PubMed ID: 24493645
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nucleotide excision repair in cellular chromatin: studies with yeast from nucleotide to gene to genome.
    Waters R; Evans K; Bennett M; Yu S; Reed S
    Int J Mol Sci; 2012; 13(9):11141-11164. PubMed ID: 23109843
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Apparent ploidy effects on silencing are post-transcriptional at HML and telomeres in Saccharomyces cerevisiae.
    McLaughlan JM; Liti G; Sharp S; Maslowska A; Louis EJ
    PLoS One; 2012; 7(7):e39044. PubMed ID: 22792162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.