BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

720 related articles for article (PubMed ID: 19954925)

  • 1. Energetic myocardial metabolism and oxidative stress: let's make them our friends in the fight against heart failure.
    Scolletta S; Biagioli B
    Biomed Pharmacother; 2010 Mar; 64(3):203-7. PubMed ID: 19954925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic remodelling of the failing heart: beneficial or detrimental?
    van Bilsen M; van Nieuwenhoven FA; van der Vusse GJ
    Cardiovasc Res; 2009 Feb; 81(3):420-8. PubMed ID: 18854380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous activation of mitochondrial KATP channels protects human failing myocardium from hydroxyl radical-induced stunning.
    Maack C; Dabew ER; Hohl M; Schäfers HJ; Böhm M
    Circ Res; 2009 Oct; 105(8):811-7. PubMed ID: 19729596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heart metabolic disturbances in cardiovascular diseases.
    Carvajal K; Moreno-Sánchez R
    Arch Med Res; 2003; 34(2):89-99. PubMed ID: 12700003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of myocardial substrate utilisation: a new therapeutic paradigm in cardiovascular disease.
    Beadle RM; Frenneaux M
    Heart; 2010 Jun; 96(11):824-30. PubMed ID: 20478861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing cardiac fatty acid and glucose metabolism as an approach to treating heart failure.
    Lopaschuk GD
    Semin Cardiothorac Vasc Anesth; 2006 Sep; 10(3):228-30. PubMed ID: 16959756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocardial substrate metabolism in the normal and failing heart.
    Stanley WC; Recchia FA; Lopaschuk GD
    Physiol Rev; 2005 Jul; 85(3):1093-129. PubMed ID: 15987803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
    Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD
    Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart.
    Jaswal JS; Keung W; Wang W; Ussher JR; Lopaschuk GD
    Biochim Biophys Acta; 2011 Jul; 1813(7):1333-50. PubMed ID: 21256164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ischemic preconditioning on mitochondrial oxidative phosphorylation and high energy phosphates in rat hearts.
    Kobara M; Tatsumi T; Matoba S; Yamahara Y; Nakagawa C; Ohta B; Matsumoto T; Inoue D; Asayama J; Nakagawa M
    J Mol Cell Cardiol; 1996 Feb; 28(2):417-28. PubMed ID: 8729072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial oxidative stress and dysfunction in myocardial remodelling.
    Tsutsui H; Kinugawa S; Matsushima S
    Cardiovasc Res; 2009 Feb; 81(3):449-56. PubMed ID: 18854381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of free fatty acids metabolism as a therapeutic target in patients with heart failure.
    Fragasso G
    Int J Clin Pract; 2007 Apr; 61(4):603-10. PubMed ID: 17394434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing cardiac energy metabolism: how can fatty acid and carbohydrate metabolism be manipulated?
    Lopaschuk GD
    Coron Artery Dis; 2001 Feb; 12 Suppl 1():S8-11. PubMed ID: 11286307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diazoxide protects mitochondria from anoxic injury: implications for myopreservation.
    Ozcan C; Holmuhamedov EL; Jahangir A; Terzic A
    J Thorac Cardiovasc Surg; 2001 Feb; 121(2):298-306. PubMed ID: 11174735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload.
    Doenst T; Pytel G; Schrepper A; Amorim P; Färber G; Shingu Y; Mohr FW; Schwarzer M
    Cardiovasc Res; 2010 Jun; 86(3):461-70. PubMed ID: 20035032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postischemic administration of succinate reverses the impairment of oxidative phosphorylation after cardiac ischemia and reperfusion injury.
    Cairns CB; Ferroggiaro AA; Walther JM; Harken AH; Banerjee A
    Circulation; 1997 Nov; 96(9 Suppl):II-260-5. PubMed ID: 9386108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K(ATP)-channel activation: effects on myocardial recovery from ischaemia and role in the cardioprotective response to adenosine A1-receptor stimulation.
    Ford WR; Lopaschuk GD; Schulz R; Clanachan AS
    Br J Pharmacol; 1998 Jun; 124(4):639-46. PubMed ID: 9690854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective pharmacotherapy against oxidative injury: alternative utility of an ATP-sensitive potassium channel opener.
    Ozcan C; Terzic A; Bienengraeber M
    J Cardiovasc Pharmacol; 2007 Oct; 50(4):411-8. PubMed ID: 18049309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Myocardial metabolism abnormalities during ischemia and reperfusion].
    Argaud L; Ovize M
    Arch Mal Coeur Vaiss; 2000 Jan; 93(1):87-90. PubMed ID: 11227723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic therapy for the treatment of ischemic heart disease: reality and expectations.
    Wang W; Lopaschuk GD
    Expert Rev Cardiovasc Ther; 2007 Nov; 5(6):1123-34. PubMed ID: 18035928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.