These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

722 related articles for article (PubMed ID: 19954925)

  • 1. Energetic myocardial metabolism and oxidative stress: let's make them our friends in the fight against heart failure.
    Scolletta S; Biagioli B
    Biomed Pharmacother; 2010 Mar; 64(3):203-7. PubMed ID: 19954925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic remodelling of the failing heart: beneficial or detrimental?
    van Bilsen M; van Nieuwenhoven FA; van der Vusse GJ
    Cardiovasc Res; 2009 Feb; 81(3):420-8. PubMed ID: 18854380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous activation of mitochondrial KATP channels protects human failing myocardium from hydroxyl radical-induced stunning.
    Maack C; Dabew ER; Hohl M; Schäfers HJ; Böhm M
    Circ Res; 2009 Oct; 105(8):811-7. PubMed ID: 19729596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heart metabolic disturbances in cardiovascular diseases.
    Carvajal K; Moreno-Sánchez R
    Arch Med Res; 2003; 34(2):89-99. PubMed ID: 12700003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of myocardial substrate utilisation: a new therapeutic paradigm in cardiovascular disease.
    Beadle RM; Frenneaux M
    Heart; 2010 Jun; 96(11):824-30. PubMed ID: 20478861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing cardiac fatty acid and glucose metabolism as an approach to treating heart failure.
    Lopaschuk GD
    Semin Cardiothorac Vasc Anesth; 2006 Sep; 10(3):228-30. PubMed ID: 16959756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocardial substrate metabolism in the normal and failing heart.
    Stanley WC; Recchia FA; Lopaschuk GD
    Physiol Rev; 2005 Jul; 85(3):1093-129. PubMed ID: 15987803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
    Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD
    Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart.
    Jaswal JS; Keung W; Wang W; Ussher JR; Lopaschuk GD
    Biochim Biophys Acta; 2011 Jul; 1813(7):1333-50. PubMed ID: 21256164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ischemic preconditioning on mitochondrial oxidative phosphorylation and high energy phosphates in rat hearts.
    Kobara M; Tatsumi T; Matoba S; Yamahara Y; Nakagawa C; Ohta B; Matsumoto T; Inoue D; Asayama J; Nakagawa M
    J Mol Cell Cardiol; 1996 Feb; 28(2):417-28. PubMed ID: 8729072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial oxidative stress and dysfunction in myocardial remodelling.
    Tsutsui H; Kinugawa S; Matsushima S
    Cardiovasc Res; 2009 Feb; 81(3):449-56. PubMed ID: 18854381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of free fatty acids metabolism as a therapeutic target in patients with heart failure.
    Fragasso G
    Int J Clin Pract; 2007 Apr; 61(4):603-10. PubMed ID: 17394434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing cardiac energy metabolism: how can fatty acid and carbohydrate metabolism be manipulated?
    Lopaschuk GD
    Coron Artery Dis; 2001 Feb; 12 Suppl 1():S8-11. PubMed ID: 11286307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diazoxide protects mitochondria from anoxic injury: implications for myopreservation.
    Ozcan C; Holmuhamedov EL; Jahangir A; Terzic A
    J Thorac Cardiovasc Surg; 2001 Feb; 121(2):298-306. PubMed ID: 11174735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload.
    Doenst T; Pytel G; Schrepper A; Amorim P; Färber G; Shingu Y; Mohr FW; Schwarzer M
    Cardiovasc Res; 2010 Jun; 86(3):461-70. PubMed ID: 20035032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postischemic administration of succinate reverses the impairment of oxidative phosphorylation after cardiac ischemia and reperfusion injury.
    Cairns CB; Ferroggiaro AA; Walther JM; Harken AH; Banerjee A
    Circulation; 1997 Nov; 96(9 Suppl):II-260-5. PubMed ID: 9386108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K(ATP)-channel activation: effects on myocardial recovery from ischaemia and role in the cardioprotective response to adenosine A1-receptor stimulation.
    Ford WR; Lopaschuk GD; Schulz R; Clanachan AS
    Br J Pharmacol; 1998 Jun; 124(4):639-46. PubMed ID: 9690854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective pharmacotherapy against oxidative injury: alternative utility of an ATP-sensitive potassium channel opener.
    Ozcan C; Terzic A; Bienengraeber M
    J Cardiovasc Pharmacol; 2007 Oct; 50(4):411-8. PubMed ID: 18049309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Myocardial metabolism abnormalities during ischemia and reperfusion].
    Argaud L; Ovize M
    Arch Mal Coeur Vaiss; 2000 Jan; 93(1):87-90. PubMed ID: 11227723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic therapy for the treatment of ischemic heart disease: reality and expectations.
    Wang W; Lopaschuk GD
    Expert Rev Cardiovasc Ther; 2007 Nov; 5(6):1123-34. PubMed ID: 18035928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.