These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 19955119)

  • 1. Zebrafish models for human FKRP muscular dystrophies.
    Kawahara G; Guyon JR; Nakamura Y; Kunkel LM
    Hum Mol Genet; 2010 Feb; 19(4):623-33. PubMed ID: 19955119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP).
    Thornhill P; Bassett D; Lochmüller H; Bushby K; Straub V
    Brain; 2008 Jun; 131(Pt 6):1551-61. PubMed ID: 18477595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A limb-girdle muscular dystrophy 2I model of muscular dystrophy identifies corrective drug compounds for dystroglycanopathies.
    Serafini PR; Feyder MJ; Hightower RM; Garcia-Perez D; Vieira NM; Lek A; Gibbs DE; Moukha-Chafiq O; Augelli-Szafran CE; Kawahara G; Widrick JJ; Kunkel LM; Alexander MS
    JCI Insight; 2018 Sep; 3(18):. PubMed ID: 30232282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autologous intramuscular transplantation of engineered satellite cells induces exosome-mediated systemic expression of Fukutin-related protein and rescues disease phenotype in a murine model of limb-girdle muscular dystrophy type 2I.
    Frattini P; Villa C; De Santis F; Meregalli M; Belicchi M; Erratico S; Bella P; Raimondi MT; Lu Q; Torrente Y
    Hum Mol Genet; 2017 Oct; 26(19):3682-3698. PubMed ID: 28666318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abnormal vascular development in zebrafish models for fukutin and FKRP deficiency.
    Wood AJ; Müller JS; Jepson CD; Laval SH; Lochmüller H; Bushby K; Barresi R; Straub V
    Hum Mol Genet; 2011 Dec; 20(24):4879-90. PubMed ID: 21926082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of defective glycosylation in congenital muscular dystrophy.
    Schachter H; Vajsar J; Zhang W
    Glycoconj J; 2004; 20(5):291-300. PubMed ID: 15229394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FKRP-dependent glycosylation of fibronectin regulates muscle pathology in muscular dystrophy.
    Wood AJ; Lin CH; Li M; Nishtala K; Alaei S; Rossello F; Sonntag C; Hersey L; Miles LB; Krisp C; Dudczig S; Fulcher AJ; Gibertini S; Conroy PJ; Siegel A; Mora M; Jusuf P; Packer NH; Currie PD
    Nat Commun; 2021 May; 12(1):2951. PubMed ID: 34012031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan.
    Brockington M; Blake DJ; Prandini P; Brown SC; Torelli S; Benson MA; Ponting CP; Estournet B; Romero NB; Mercuri E; Voit T; Sewry CA; Guicheney P; Muntoni F
    Am J Hum Genet; 2001 Dec; 69(6):1198-209. PubMed ID: 11592034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NAD+ improves neuromuscular development in a zebrafish model of FKRP-associated dystroglycanopathy.
    Bailey EC; Alrowaished SS; Kilroy EA; Crooks ES; Drinkert DM; Karunasiri CM; Belanger JJ; Khalil A; Kelley JB; Henry CA
    Skelet Muscle; 2019 Aug; 9(1):21. PubMed ID: 31391079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zebrafish Fukutin family proteins link the unfolded protein response with dystroglycanopathies.
    Lin YY; White RJ; Torelli S; Cirak S; Muntoni F; Stemple DL
    Hum Mol Genet; 2011 May; 20(9):1763-75. PubMed ID: 21317159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional requirements for fukutin-related protein in the Golgi apparatus.
    Esapa CT; Benson MA; Schröder JE; Martin-Rendon E; Brockington M; Brown SC; Muntoni F; Kröger S; Blake DJ
    Hum Mol Genet; 2002 Dec; 11(26):3319-31. PubMed ID: 12471058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C.
    Brockington M; Yuva Y; Prandini P; Brown SC; Torelli S; Benson MA; Herrmann R; Anderson LV; Bashir R; Burgunder JM; Fallet S; Romero N; Fardeau M; Straub V; Storey G; Pollitt C; Richard I; Sewry CA; Bushby K; Voit T; Blake DJ; Muntoni F
    Hum Mol Genet; 2001 Dec; 10(25):2851-9. PubMed ID: 11741828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycosylation defects: a new mechanism for muscular dystrophy?
    Grewal PK; Hewitt JE
    Hum Mol Genet; 2003 Oct; 12 Spec No 2():R259-64. PubMed ID: 12925572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan.
    Godfrey C; Clement E; Mein R; Brockington M; Smith J; Talim B; Straub V; Robb S; Quinlivan R; Feng L; Jimenez-Mallebrera C; Mercuri E; Manzur AY; Kinali M; Torelli S; Brown SC; Sewry CA; Bushby K; Topaloglu H; North K; Abbs S; Muntoni F
    Brain; 2007 Oct; 130(Pt 10):2725-35. PubMed ID: 17878207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosylation defects in inherited muscle disease.
    Hewitt JE; Grewal PK
    Cell Mol Life Sci; 2003 Feb; 60(2):251-8. PubMed ID: 12678490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan.
    Longman C; Brockington M; Torelli S; Jimenez-Mallebrera C; Kennedy C; Khalil N; Feng L; Saran RK; Voit T; Merlini L; Sewry CA; Brown SC; Muntoni F
    Hum Mol Genet; 2003 Nov; 12(21):2853-61. PubMed ID: 12966029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genes required for functional glycosylation of dystroglycan are conserved in zebrafish.
    Moore CJ; Goh HT; Hewitt JE
    Genomics; 2008 Sep; 92(3):159-67. PubMed ID: 18632251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NAD+ enhances ribitol and ribose rescue of α-dystroglycan functional glycosylation in human FKRP-mutant myotubes.
    Ortiz-Cordero C; Magli A; Dhoke NR; Kuebler T; Selvaraj S; Oliveira NA; Zhou H; Sham YY; Bang AG; Perlingeiro RC
    Elife; 2021 Jan; 10():. PubMed ID: 33513091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fukutin-related protein is essential for mouse muscle, brain and eye development and mutation recapitulates the wide clinical spectrums of dystroglycanopathies.
    Chan YM; Keramaris-Vrantsis E; Lidov HG; Norton JH; Zinchenko N; Gruber HE; Thresher R; Blake DJ; Ashar J; Rosenfeld J; Lu QL
    Hum Mol Genet; 2010 Oct; 19(20):3995-4006. PubMed ID: 20675713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fukutin-Related Protein: From Pathology to Treatments.
    Ortiz-Cordero C; Azzag K; Perlingeiro RCR
    Trends Cell Biol; 2021 Mar; 31(3):197-210. PubMed ID: 33272829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.