These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 19955366)
1. The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration. Tam BM; Moritz OL J Neurosci; 2009 Dec; 29(48):15145-54. PubMed ID: 19955366 [TBL] [Abstract][Full Text] [Related]
2. Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa. Tam BM; Noorwez SM; Kaushal S; Kono M; Moritz OL J Neurosci; 2014 Oct; 34(40):13336-48. PubMed ID: 25274813 [TBL] [Abstract][Full Text] [Related]
3. Synchronized Photoactivation of T4K Rhodopsin Causes a Chromophore-Dependent Retinal Degeneration That Is Moderated by Interaction with Phototransduction Cascade Components. Tam BM; Burns P; Chiu CN; Moritz OL J Neurosci; 2024 Sep; 44(36):. PubMed ID: 39089885 [TBL] [Abstract][Full Text] [Related]
4. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Tam BM; Moritz OL Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3234-41. PubMed ID: 16877386 [TBL] [Abstract][Full Text] [Related]
5. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light. Zhang R; Oglesby E; Marsh-Armstrong N Exp Eye Res; 2008 Apr; 86(4):612-21. PubMed ID: 18291367 [TBL] [Abstract][Full Text] [Related]
7. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin. Tam BM; Moritz OL J Neurosci; 2007 Aug; 27(34):9043-53. PubMed ID: 17715341 [TBL] [Abstract][Full Text] [Related]
8. Autophagy in Wen RH; Stanar P; Tam B; Moritz OL Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014 [TBL] [Abstract][Full Text] [Related]
9. Increased sensitivity to light-induced damage in a mouse model of autosomal dominant retinal disease. White DA; Fritz JJ; Hauswirth WW; Kaushal S; Lewin AS Invest Ophthalmol Vis Sci; 2007 May; 48(5):1942-51. PubMed ID: 17460245 [TBL] [Abstract][Full Text] [Related]
10. The severe autosomal dominant retinitis pigmentosa rhodopsin mutant Ter349Glu mislocalizes and induces rapid rod cell death. Hollingsworth TJ; Gross AK J Biol Chem; 2013 Oct; 288(40):29047-55. PubMed ID: 23940033 [TBL] [Abstract][Full Text] [Related]
11. Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration. Lee DC; Vazquez-Chona FR; Ferrell WD; Tam BM; Jones BW; Marc RE; Moritz OL J Neurosci; 2012 Feb; 32(6):2121-8. PubMed ID: 22323724 [TBL] [Abstract][Full Text] [Related]
12. Targeted disruption of the endogenous zebrafish Zelinka CP; Sotolongo-Lopez M; Fadool JM Mol Vis; 2018; 24():587-602. PubMed ID: 30210230 [TBL] [Abstract][Full Text] [Related]
13. Mislocalized rhodopsin does not require activation to cause retinal degeneration and neurite outgrowth in Xenopus laevis. Tam BM; Xie G; Oprian DD; Moritz OL J Neurosci; 2006 Jan; 26(1):203-9. PubMed ID: 16399688 [TBL] [Abstract][Full Text] [Related]
14. Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic Vent-Schmidt RYJ; Wen RH; Zong Z; Chiu CN; Tam BM; May CG; Moritz OL J Neurosci; 2017 Jan; 37(4):1039-1054. PubMed ID: 28490005 [TBL] [Abstract][Full Text] [Related]
15. Defective trafficking of rhodopsin and its role in retinal degenerations. Hollingsworth TJ; Gross AK Int Rev Cell Mol Biol; 2012; 293():1-44. PubMed ID: 22251557 [TBL] [Abstract][Full Text] [Related]
16. Glycosylation of rhodopsin is necessary for its stability and incorporation into photoreceptor outer segment discs. Murray AR; Vuong L; Brobst D; Fliesler SJ; Peachey NS; Gorbatyuk MS; Naash MI; Al-Ubaidi MR Hum Mol Genet; 2015 May; 24(10):2709-23. PubMed ID: 25637522 [TBL] [Abstract][Full Text] [Related]
17. Retinal cAMP levels during the progression of retinal degeneration in rhodopsin P23H and S334ter transgenic rats. Traverso V; Bush RA; Sieving PA; Deretic D Invest Ophthalmol Vis Sci; 2002 May; 43(5):1655-61. PubMed ID: 11980887 [TBL] [Abstract][Full Text] [Related]
18. Retinitis pigmentosa mutants provide insight into the role of the N-terminal cap in rhodopsin folding, structure, and function. Opefi CA; South K; Reynolds CA; Smith SO; Reeves PJ J Biol Chem; 2013 Nov; 288(47):33912-33926. PubMed ID: 24106275 [TBL] [Abstract][Full Text] [Related]
19. Endoplasmic reticulum stress in vertebrate mutant rhodopsin models of retinal degeneration. Kroeger H; LaVail MM; Lin JH Adv Exp Med Biol; 2014; 801():585-92. PubMed ID: 24664747 [TBL] [Abstract][Full Text] [Related]
20. Role of rhodopsin and arrestin phosphorylation in retinal degeneration of Drosophila. Kristaponyte I; Hong Y; Lu H; Shieh BH J Neurosci; 2012 Aug; 32(31):10758-66. PubMed ID: 22855823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]