BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 19955371)

  • 1. A selective glial barrier at motor axon exit points prevents oligodendrocyte migration from the spinal cord.
    Kucenas S; Wang WD; Knapik EW; Appel B
    J Neurosci; 2009 Dec; 29(48):15187-94. PubMed ID: 19955371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact-mediated inhibition between oligodendrocyte progenitor cells and motor exit point glia establishes the spinal cord transition zone.
    Smith CJ; Morris AD; Welsh TG; Kucenas S
    PLoS Biol; 2014 Sep; 12(9):e1001961. PubMed ID: 25268888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sox10 is necessary for oligodendrocyte survival following axon wrapping.
    Takada N; Kucenas S; Appel B
    Glia; 2010 Jun; 58(8):996-1006. PubMed ID: 20229602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation of 3-hydroxy-3-methylglutaryl CoA synthase I reveals requirements for isoprenoid and cholesterol synthesis in oligodendrocyte migration arrest, axon wrapping, and myelin gene expression.
    Mathews ES; Mawdsley DJ; Walker M; Hines JH; Pozzoli M; Appel B
    J Neurosci; 2014 Feb; 34(9):3402-12. PubMed ID: 24573296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boundary cap cells constrain spinal motor neuron somal migration at motor exit points by a semaphorin-plexin mechanism.
    Bron R; Vermeren M; Kokot N; Andrews W; Little GE; Mitchell KJ; Cohen J
    Neural Dev; 2007 Oct; 2():21. PubMed ID: 17971221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radial glia inhibit peripheral glial infiltration into the spinal cord at motor exit point transition zones.
    Smith CJ; Johnson K; Welsh TG; Barresi MJ; Kucenas S
    Glia; 2016 Jul; 64(7):1138-53. PubMed ID: 27029762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knockdown of Lingo1b protein promotes myelination and oligodendrocyte differentiation in zebrafish.
    Yin W; Hu B
    Exp Neurol; 2014 Jan; 251():72-83. PubMed ID: 24262204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual axons regulate the myelinating potential of single oligodendrocytes in vivo.
    Almeida RG; Czopka T; Ffrench-Constant C; Lyons DA
    Development; 2011 Oct; 138(20):4443-50. PubMed ID: 21880787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CNS-derived glia ensheath peripheral nerves and mediate motor root development.
    Kucenas S; Takada N; Park HC; Woodruff E; Broadie K; Appel B
    Nat Neurosci; 2008 Feb; 11(2):143-51. PubMed ID: 18176560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNS/PNS boundary transgression by central glia in the absence of Schwann cells or Krox20/Egr2 function.
    Coulpier F; Decker L; Funalot B; Vallat JM; Garcia-Bragado F; Charnay P; Topilko P
    J Neurosci; 2010 Apr; 30(17):5958-67. PubMed ID: 20427655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor Exit Point (MEP) Glia: Novel Myelinating Glia That Bridge CNS and PNS Myelin.
    Fontenas L; Kucenas S
    Front Cell Neurosci; 2018; 12():333. PubMed ID: 30356886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oligodendrocyte Development in the Absence of Their Target Axons In Vivo.
    Almeida R; Lyons D
    PLoS One; 2016; 11(10):e0164432. PubMed ID: 27716830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo imaging of cell behaviors and F-actin reveals LIM-HD transcription factor regulation of peripheral versus central sensory axon development.
    Andersen EF; Asuri NS; Halloran MC
    Neural Dev; 2011 May; 6():27. PubMed ID: 21619654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oligodendrocytes are not inherently programmed to myelinate a specific size of axon.
    Fanarraga ML; Griffiths IR; Zhao M; Duncan ID
    J Comp Neurol; 1998 Sep; 399(1):94-100. PubMed ID: 9725703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boundary cap cells are highly competitive for CNS remyelination: fast migration and efficient differentiation in PNS and CNS myelin-forming cells.
    Zujovic V; Thibaud J; Bachelin C; Vidal M; Coulpier F; Charnay P; Topilko P; Baron-Van Evercooren A
    Stem Cells; 2010 Mar; 28(3):470-9. PubMed ID: 20039366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The CNS-PNS transitional zone of the rat. Morphometric studies at cranial and spinal levels.
    Fraher JP
    Prog Neurobiol; 1992; 38(3):261-316. PubMed ID: 1546164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual neuronal subtypes control initial myelin sheath growth and stabilization.
    Nelson HN; Treichel AJ; Eggum EN; Martell MR; Kaiser AJ; Trudel AG; Gronseth JR; Maas ST; Bergen S; Hines JH
    Neural Dev; 2020 Sep; 15(1):12. PubMed ID: 32988384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perineurial Glial Plasticity and the Role of TGF-β in the Development of the Blood-Nerve Barrier.
    Morris AD; Lewis GM; Kucenas S
    J Neurosci; 2017 May; 37(18):4790-4807. PubMed ID: 28389474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transitional zone and CNS regeneration.
    Fraher JP
    J Anat; 1999 Feb; 194(Pt 2)(Pt 2):161-82. PubMed ID: 10337949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway.
    Fassier C; Hutt JA; Scholpp S; Lumsden A; Giros B; Nothias F; Schneider-Maunoury S; Houart C; Hazan J
    Nat Neurosci; 2010 Nov; 13(11):1380-7. PubMed ID: 20935645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.