BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 19955617)

  • 1. Chitosan: a green carbon source for the synthesis of graphitic nanocarbon, tungsten carbide and graphitic nanocarbon/tungsten carbide composites.
    Wang B; Tian C; Wang L; Wang R; Fu H
    Nanotechnology; 2010 Jan; 21(2):025606. PubMed ID: 19955617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silica-templated synthesis of ordered mesoporous tungsten carbide/graphitic carbon composites with nanocrystalline walls and high surface areas via a temperature-programmed carburization route.
    Wu Z; Yang Y; Gu D; Li Q; Feng D; Chen Z; Tu B; Webley PA; Zhao D
    Small; 2009 Dec; 5(23):2738-49. PubMed ID: 19743431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct imaging of the structure, relaxation, and sterically constrained motion of encapsulated tungsten polyoxometalate lindqvist ions within carbon nanotubes.
    Sloan J; Matthewman G; Dyer-Smith C; Sung AY; Liu Z; Suenaga K; Kirkland AI; Flahaut E
    ACS Nano; 2008 May; 2(5):966-76. PubMed ID: 19206494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and mechanical properties of chitosan/carbon nanotubes composites.
    Wang SF; Shen L; Zhang WD; Tong YJ
    Biomacromolecules; 2005; 6(6):3067-72. PubMed ID: 16283728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the graphitization mechanism of SiO(2) nanoparticles in chemical vapor deposition.
    Bachmatiuk A; Börrnert F; Grobosch M; Schäffel F; Wolff U; Scott A; Zaka M; Warner JH; Klingeler R; Knupfer M; Büchner B; Rümmeli MH
    ACS Nano; 2009 Dec; 3(12):4098-104. PubMed ID: 19908851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plumbing carbon nanotubes.
    Jin C; Suenaga K; Iijima S
    Nat Nanotechnol; 2008 Jan; 3(1):17-21. PubMed ID: 18654444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, characterization, and manipulation of nitrogen-doped carbon nanotube cups.
    Allen BL; Kichambare PD; Star A
    ACS Nano; 2008 Sep; 2(9):1914-20. PubMed ID: 19206432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting.
    Garcia-Esparza AT; Cha D; Ou Y; Kubota J; Domen K; Takanabe K
    ChemSusChem; 2013 Jan; 6(1):168-81. PubMed ID: 23255471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One- and two-dimensional diffusion of metal atoms in graphene.
    Gan Y; Sun L; Banhart F
    Small; 2008 May; 4(5):587-91. PubMed ID: 18398922
    [No Abstract]   [Full Text] [Related]  

  • 11. Carbon nanotube guided formation of silicon oxide nanotrenches.
    Byon HR; Choi HC
    Nat Nanotechnol; 2007 Mar; 2(3):162-6. PubMed ID: 18654246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-state synthesis of well-defined carbon nanocapsules from organometallic precursors.
    Jain D; Winkel A; Wilhelm R
    Small; 2006 Jun; 2(6):752-5. PubMed ID: 17193118
    [No Abstract]   [Full Text] [Related]  

  • 13. Engineering low-aspect ratio carbon nanostructures: nanocups, nanorings, and nanocontainers.
    Chun H; Hahm MG; Homma Y; Meritz R; Kuramochi K; Menon L; Ci L; Ajayan PM; Jung YJ
    ACS Nano; 2009 May; 3(5):1274-8. PubMed ID: 19408923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-phase synthesis of graphitic carbon nanostructures from iron and cobalt gluconates and their utilization as electrocatalyst supports.
    Sevilla M; Salinas Martínez-de Lecea C; Valdés-Solís T; Morallón E; Fuertes AB
    Phys Chem Chem Phys; 2008 Mar; 10(10):1433-42. PubMed ID: 18309400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraordinary improvement of the graphitic structure of continuous carbon nanofibers templated with double wall carbon nanotubes.
    Papkov D; Beese AM; Goponenko A; Zou Y; Naraghi M; Espinosa HD; Saha B; Schatz GC; Moravsky A; Loutfy R; Nguyen ST; Dzenis Y
    ACS Nano; 2013 Jan; 7(1):126-42. PubMed ID: 23249440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room temperature purification of few-walled carbon nanotubes with high yield.
    Feng Y; Zhang H; Hou Y; McNicholas TP; Yuan D; Yang S; Ding L; Feng W; Liu J
    ACS Nano; 2008 Aug; 2(8):1634-8. PubMed ID: 19206366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diameter-selective growth of single-walled carbon nanotubes with high quality by floating catalyst method.
    Liu Q; Ren W; Chen ZG; Wang DW; Liu B; Yu B; Li F; Cong H; Cheng HM
    ACS Nano; 2008 Aug; 2(8):1722-8. PubMed ID: 19206377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-state microwave-arcing-induced formation and surface functionalization of core/shell metal/carbon nanoparticles.
    Liang YC; Hwang KC; Lo SC
    Small; 2008 Apr; 4(4):405-9. PubMed ID: 18383573
    [No Abstract]   [Full Text] [Related]  

  • 19. Hierarchical assembly of TiO2 nanoparticles on WS2 nanotubes achieved through multifunctional polymeric ligands.
    Tahir MN; Zink N; Eberhardt M; Therese HA; Faiss S; Janshoff A; Kolb U; Theato P; Tremel W
    Small; 2007 May; 3(5):829-34. PubMed ID: 17407103
    [No Abstract]   [Full Text] [Related]  

  • 20. Oxidation and thermal stability of linear carbon chains contained in thermally treated double-walled carbon nanotubes.
    Muramatsu H; Kim YA; Hayashi T; Endo M; Terrones M; Dresselhaus MS
    Small; 2007 May; 3(5):788-92. PubMed ID: 17393551
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 27.