These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19955870)

  • 1. Forward dynamics simulations provide insight into muscle mechanical work during human locomotion.
    Neptune RR; McGowan CP; Kautz SA
    Exerc Sport Sci Rev; 2009 Oct; 37(4):203-10. PubMed ID: 19955870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationships between muscle, external, internal and joint mechanical work during normal walking.
    Sasaki K; Neptune RR; Kautz SA
    J Exp Biol; 2009 Mar; 212(Pt 5):738-44. PubMed ID: 19218526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-muscle, continuum-mechanical forward simulation of the upper limb.
    Röhrle O; Sprenger M; Schmitt S
    Biomech Model Mechanobiol; 2017 Jun; 16(3):743-762. PubMed ID: 27837360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of muscle energy models for simulating human walking in three dimensions.
    Miller RH
    J Biomech; 2014 Apr; 47(6):1373-81. PubMed ID: 24581797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion.
    Sartori M; Maculan M; Pizzolato C; Reggiani M; Farina D
    J Neurophysiol; 2015 Oct; 114(4):2509-27. PubMed ID: 26245321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait.
    Rajagopal A; Dembia CL; DeMers MS; Delp DD; Hicks JL; Delp SL
    IEEE Trans Biomed Eng; 2016 Oct; 63(10):2068-79. PubMed ID: 27392337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of muscle-tendon function in human walking at self-selected speed.
    Endo K; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):352-62. PubMed ID: 24608689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A forward-muscular inverse-skeletal dynamics framework for human musculoskeletal simulations.
    S Shourijeh M; Smale KB; Potvin BM; Benoit DL
    J Biomech; 2016 Jun; 49(9):1718-1723. PubMed ID: 27106173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking.
    Neptune RR; Kautz SA; Zajac FE
    J Biomech; 2001 Nov; 34(11):1387-98. PubMed ID: 11672713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual muscle contributions to circular turning mechanics.
    Ventura JD; Klute GK; Neptune RR
    J Biomech; 2015 Apr; 48(6):1067-74. PubMed ID: 25700608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications.
    Zajac FE; Neptune RR; Kautz SA
    Gait Posture; 2003 Feb; 17(1):1-17. PubMed ID: 12535721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalization of a muscle-reflex control model to 3D walking.
    Song S; Geyer H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7463-6. PubMed ID: 24111471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of aperiodic bipedal sprinting.
    Celik H; Piazza SJ
    J Biomech Eng; 2013 Aug; 135(8):81008. PubMed ID: 23722442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of walking speed on muscle function and mechanical energetics.
    Neptune RR; Sasaki K; Kautz SA
    Gait Posture; 2008 Jul; 28(1):135-43. PubMed ID: 18158246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait.
    Correa TA; Baker R; Graham HK; Pandy MG
    J Biomech; 2011 Jul; 44(11):2096-105. PubMed ID: 21703627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in muscle function during walking and running at the same speed.
    Sasaki K; Neptune RR
    J Biomech; 2006; 39(11):2005-13. PubMed ID: 16129444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations.
    Zajac FE; Neptune RR; Kautz SA
    Gait Posture; 2002 Dec; 16(3):215-32. PubMed ID: 12443946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data.
    Thelen DG; Anderson FC
    J Biomech; 2006; 39(6):1107-15. PubMed ID: 16023125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting gait adaptations due to ankle plantarflexor muscle weakness and contracture using physics-based musculoskeletal simulations.
    Ong CF; Geijtenbeek T; Hicks JL; Delp SL
    PLoS Comput Biol; 2019 Oct; 15(10):e1006993. PubMed ID: 31589597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle moment arms and sensitivity analysis of a mouse hindlimb musculoskeletal model.
    Charles JP; Cappellari O; Spence AJ; Wells DJ; Hutchinson JR
    J Anat; 2016 Oct; 229(4):514-35. PubMed ID: 27173448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.