These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19955870)

  • 21. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait.
    Michaud F; Lamas M; Lugrís U; Cuadrado J
    J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comment on "Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking" ((Neptune et al., 2001) and "Muscle mechanical work requirements during normal walking: the energetic cost of raising the body's center-of-mass is significant" (Neptune et al., 2004).
    Kuo AD; Donelan JM
    J Biomech; 2009 Aug; 42(11):1783-5; author reply 1786-9. PubMed ID: 19482286
    [No Abstract]   [Full Text] [Related]  

  • 23. Strength Training Effects on Muscle Forces and Contributions to Whole-Body Movement in Cerebral Palsy.
    Hegarty AK; Kurz MJ; Stuberg W; Silverman AK
    J Mot Behav; 2019; 51(5):496-510. PubMed ID: 30351246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton.
    Chen W; Wu S; Zhou T; Xiong C
    Bioinspir Biomim; 2018 Dec; 14(1):016012. PubMed ID: 30511650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elastic ankle muscle-tendon interactions are adjusted to produce acceleration during walking in humans.
    Farris DJ; Raiteri BJ
    J Exp Biol; 2017 Nov; 220(Pt 22):4252-4260. PubMed ID: 28954818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry.
    Bosmans L; Valente G; Wesseling M; Van Campen A; De Groote F; De Schutter J; Jonkers I
    J Biomech; 2015 Jul; 48(10):2116-23. PubMed ID: 25979383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-Time Calibration-Free Musculotendon Kinematics for Neuromusculoskeletal Models.
    Cornish BM; Diamond LE; Saxby DJ; Xia Z; Pizzolato C
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3486-3495. PubMed ID: 39240743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Closed-loop EMG-informed model-based analysis of human musculoskeletal mechanics on rough terrains.
    Varotto C; Sawacha Z; Gizzi L; Farina D; Sartori M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():364-368. PubMed ID: 28813846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inverse dynamic estimates of muscle recruitment and joint contact forces are more realistic when minimizing muscle activity rather than metabolic energy or contact forces.
    Zargham A; Afschrift M; De Schutter J; Jonkers I; De Groote F
    Gait Posture; 2019 Oct; 74():223-230. PubMed ID: 31563823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscle-driven forward dynamics simulation for the study of differences in muscle function during stair ascent and descent.
    Selk Ghafari A; Meghdari A; Vossoughi GR
    Proc Inst Mech Eng H; 2009 Oct; 223(7):863-74. PubMed ID: 19908425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Muscle-specific indices to characterise the functional behaviour of human lower-limb muscles during locomotion.
    Lai AKM; Biewener AA; Wakeling JM
    J Biomech; 2019 May; 89():134-138. PubMed ID: 31036379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of human walking for exoskeletal support.
    van Dijk W; van der Kooij H; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650394. PubMed ID: 24187213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An EMG-based, muscle driven forward simulation of single support phase of gait.
    Jonkers I; Spaepen A; Papaioannou G; Stewart C
    J Biomech; 2002 May; 35(5):609-19. PubMed ID: 11955500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gait in adolescent idiopathic scoliosis: energy cost analysis.
    Mahaudens P; Detrembleur C; Mousny M; Banse X
    Eur Spine J; 2009 Aug; 18(8):1160-8. PubMed ID: 19390877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters.
    Valero-Cuevas FJ; Johanson ME; Towles JD
    J Biomech; 2003 Jul; 36(7):1019-30. PubMed ID: 12757811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predictive neuromechanical simulations indicate why walking performance declines with ageing.
    Song S; Geyer H
    J Physiol; 2018 Apr; 596(7):1199-1210. PubMed ID: 29344967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potential of muscles to accelerate the body during late-stance forward progression in individuals with knee osteoarthritis.
    Ogaya S; Kubota R; Chujo Y; Hirooka E; Ito K; Kwang-Ho K; Hase K
    Hum Mov Sci; 2018 Oct; 61():109-116. PubMed ID: 30077819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional resistance training during walking: Mode of application differentially affects gait biomechanics and muscle activation patterns.
    Washabaugh EP; Augenstein TE; Krishnan C
    Gait Posture; 2020 Jan; 75():129-136. PubMed ID: 31678694
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Joint-level mechanics of the walk-to-run transition in humans.
    Pires NJ; Lay BS; Rubenson J
    J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.