These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19956307)

  • 1. Computational integral-imaging reconstruction-based 3-D volumetric target object recognition by using a 3-D reference object.
    Kim SC; Park SC; Kim ES
    Appl Opt; 2009 Dec; 48(34):H95-104. PubMed ID: 19956307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolution-enhanced reconstruction of far 3-D objects by using a direct pixel mapping method in computational curving-effective integral imaging.
    Piao Y; Kim ES
    Appl Opt; 2009 Dec; 48(34):H222-30. PubMed ID: 19956294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction of location coordinates of 3-D objects from computationally reconstructed integral images basing on a blur metric.
    Hwang DC; Lee KJ; Kim SC; Kim ES
    Opt Express; 2008 Mar; 16(6):3623-35. PubMed ID: 18542455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blur-metric-based resolution enhancement of computationally reconstructed integral images.
    Lee KJ; Hwang DC; Kim SC; Kim ES
    Appl Opt; 2008 May; 47(15):2859-69. PubMed ID: 18493293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volumetric object reconstruction using the 3D-MRF model-based segmentation.
    Choi SM; Lee JE; Kim J; Kim MH
    IEEE Trans Med Imaging; 1997 Dec; 16(6):887-92. PubMed ID: 9533588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image quality enhancement of computational integral imaging reconstruction for partially occluded objects using binary weighting mask on occlusion areas.
    Lee JJ; Lee BG; Yoo H
    Appl Opt; 2011 May; 50(13):1889-93. PubMed ID: 21532670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depth extraction of three-dimensional objects in space by the computational integral imaging reconstruction technique.
    Hwang DC; Shin DH; Kim SC; Kim ES
    Appl Opt; 2008 Jul; 47(19):D128-35. PubMed ID: 18594568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3-D object recognition using 2-D views.
    Li W; Bebis G; Bourbakis NG
    IEEE Trans Image Process; 2008 Nov; 17(11):2236-55. PubMed ID: 18854254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging.
    Shin DH; Tan CW; Lee BG; Lee JJ; Kim ES
    Appl Opt; 2008 Dec; 47(35):6656-65. PubMed ID: 19079477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance diffractive imaging.
    Ito S; Ono A; Yamada Y
    IEEE Trans Biomed Eng; 2002 Jun; 49(6):574-83. PubMed ID: 12046703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple correction method of distorted elemental images using surface markers on lenslet array for computational integral imaging reconstruction.
    Lee JJ; Shin DH; Lee BG
    Opt Express; 2009 Sep; 17(20):18026-37. PubMed ID: 19907592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depth extraction of three-dimensional objects using block matching for slice images in synthetic aperture integral imaging.
    Lee JJ; Lee BG; Yoo H
    Appl Opt; 2011 Oct; 50(29):5624-9. PubMed ID: 22015355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curved computational integral imaging reconstruction technique for resolution-enhanced display of three-dimensional object images.
    Hyun JB; Hwang DC; Shin DH; Kim ES
    Appl Opt; 2007 Nov; 46(31):7697-708. PubMed ID: 17973014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discriminative learning and recognition of image set classes using canonical correlations.
    Kim TK; Kittler J; Cipolla R
    IEEE Trans Pattern Anal Mach Intell; 2007 Jun; 29(6):1005-18. PubMed ID: 17431299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visibility-enhanced reconstruction of three-dimensional objects under a heavily scattering medium through combined use of intermediate view reconstruction, multipixel extraction, and histogram equalization methods in the conventional integral imaging system.
    Zhang M; Piao Y; Kim ES
    Appl Opt; 2011 Oct; 50(28):5369-81. PubMed ID: 22016203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional surface reconstruction using optical flow for medical imaging.
    Weng N; Yang YH; Pierson R
    IEEE Trans Med Imaging; 1997 Oct; 16(5):630-41. PubMed ID: 9368119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallelized Bayesian inversion for three-dimensional dental X-ray imaging.
    Kolehmainen V; Vanne A; Siltanen S; Järvenpää S; Kaipio JP; Lassas M; Kalke M
    IEEE Trans Med Imaging; 2006 Feb; 25(2):218-28. PubMed ID: 16468456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing computational integral imaging performance using an interpolation method based on non-zero-pixel derivation.
    Wang X; Guo Q
    Appl Opt; 2010 Jul; 49(20):3997-4003. PubMed ID: 20648179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local hull-based surface construction of volumetric data from silhouettes.
    Shin D; Tjahjadi T
    IEEE Trans Image Process; 2008 Aug; 17(8):1251-60. PubMed ID: 18632336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image quality enhancement in 3D computational integral imaging by use of interpolation methods.
    Shin DH; Yoo H
    Opt Express; 2007 Sep; 15(19):12039-49. PubMed ID: 19547568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.