BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19956501)

  • 1. Synergistic effect of ionizing radiation and beta-Lapachone against RKO human colon adenocarcinoma cells.
    Kim EJ; Ji IM; Ahn KJ; Choi EK; Park HJ; Lim BU; Song CW; Park HJ
    Cancer Res Treat; 2005 Jun; 37(3):183-90. PubMed ID: 19956501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Susceptibility of cancer cells to beta-lapachone is enhanced by ionizing radiation.
    Park HJ; Ahn KJ; Ahn SD; Choi E; Lee SW; Williams B; Kim EJ; Griffin R; Bey EA; Bornmann WG; Gao J; Park HJ; Boothman DA; Song CW
    Int J Radiat Oncol Biol Phys; 2005 Jan; 61(1):212-9. PubMed ID: 15629614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of radiation effect using beta-lapachone and underlying mechanism.
    Ahn KJ; Lee HS; Bai SK; Song CW
    Radiat Oncol J; 2013 Jun; 31(2):57-65. PubMed ID: 23865001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic effects of radiation and beta-lapachone in DU-145 human prostate cancer cells in vitro.
    Suzuki M; Amano M; Choi J; Park HJ; Williams BW; Ono K; Song CW
    Radiat Res; 2006 May; 165(5):525-31. PubMed ID: 16669706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upregulation of NAD(P)H:quinone oxidoreductase by radiation potentiates the effect of bioreductive beta-lapachone on cancer cells.
    Choi EK; Terai K; Ji IM; Kook YH; Park KH; Oh ET; Griffin RJ; Lim BU; Kim JS; Lee DS; Boothman DA; Loren M; Song CW; Park HJ
    Neoplasia; 2007 Aug; 9(8):634-42. PubMed ID: 17786182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human papillomavirus E6 and E7 oncoproteins alter cell cycle progression but not radiosensitivity of carcinoma cells treated with low-dose-rate radiation.
    DeWeese TL; Walsh JC; Dillehay LE; Kessis TD; Hedrick L; Cho KR; Nelson WG
    Int J Radiat Oncol Biol Phys; 1997 Jan; 37(1):145-54. PubMed ID: 9054890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiosensitization of tumor cells by modulation of ATM kinase.
    Choi EK; Ji IM; Lee SR; Kook YH; Griffin RJ; Lim BU; Kim JS; Lee DS; Song CW; Park HJ
    Int J Radiat Biol; 2006 Apr; 82(4):277-83. PubMed ID: 16690595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1-Methylxanthine enhances the radiosensitivity of tumor cells.
    Youn H; Hee Kook Y; Oh ET; Jeong SY; Kim C; Kyung Choi E; Uk Lim B; Park HJ
    Int J Radiat Biol; 2009 Feb; 85(2):167-74. PubMed ID: 19280470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of environmental pH on G2-phase arrest caused by ionizing radiation.
    Park HJ; Lee SH; Chung H; Rhee YH; Lim BU; Ha SW; Griffin RJ; Lee HS; Song CW; Choi EK
    Radiat Res; 2003 Jan; 159(1):86-93. PubMed ID: 12492371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53.
    Wang Q; Fan S; Eastman A; Worland PJ; Sausville EA; O'Connor PM
    J Natl Cancer Inst; 1996 Jul; 88(14):956-65. PubMed ID: 8667426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperthermia enhances the effect of β-lapachone to cause γH2AX formations and cell death in human osteosarcoma cells.
    Hori T; Kondo T; Lee H; Song CW; Park HJ
    Int J Hyperthermia; 2011; 27(1):53-62. PubMed ID: 21070139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3, 3'-Dimethylquercetin Inhibits the Proliferation of Human Colon Cancer RKO Cells through Inducing G2/M Cell Cycle Arrest and Apoptosis.
    Wu J; Yi J; Wu Y; Chen X; Zeng J; Wu J; Peng W
    Anticancer Agents Med Chem; 2019; 19(3):402-409. PubMed ID: 30398122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential p53-dependent mechanism of radiosensitization in vitro and in vivo by the protein kinase C-specific inhibitor PKC412.
    Zaugg K; Rocha S; Resch H; Hegyi I; Oehler C; Glanzmann C; Fabbro D; Bodis S; Pruschy M
    Cancer Res; 2001 Jan; 61(2):732-8. PubMed ID: 11212276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methoxyamine potentiates iododeoxyuridine-induced radiosensitization by altering cell cycle kinetics and enhancing senescence.
    Yan T; Seo Y; Schupp JE; Zeng X; Desai AB; Kinsella TJ
    Mol Cancer Ther; 2006 Apr; 5(4):893-902. PubMed ID: 16648559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systemic delivery and preclinical evaluation of Au nanoparticle containing beta-lapachone for radiosensitization.
    Jeong SY; Park SJ; Yoon SM; Jung J; Woo HN; Yi SL; Song SY; Park HJ; Kim C; Lee JS; Lee JS; Choi EK
    J Control Release; 2009 Nov; 139(3):239-45. PubMed ID: 19619590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetrandrine enhances radiosensitivity through the CDC25C/CDK1/cyclin B1 pathway in nasopharyngeal carcinoma cells.
    Wang J; Chang L; Lai X; Li X; Wang Z; Huang Z; Huang J; Zhang G
    Cell Cycle; 2018; 17(6):671-680. PubMed ID: 29285984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paclitaxel sensitivity correlates with p53 status and DNA fragmentation, but not G2/M accumulation.
    Rakovitch E; Mellado W; Hall EJ; Pandita TK; Sawant S; Geard CR
    Int J Radiat Oncol Biol Phys; 1999 Jul; 44(5):1119-24. PubMed ID: 10421546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced therapeutic efficacy of adenovirus-mediated interleukin-24 gene therapy combined with ionizing radiotherapy for nasopharyngeal carcinoma.
    Liu J; Zhang Y; Sun P; Xie Y; Xiang J; Yang J
    Oncol Rep; 2013 Sep; 30(3):1165-74. PubMed ID: 23783436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetrandrine: a potent abrogator of G2 checkpoint function in tumor cells and its mechanism.
    Sun XC; Cheng HY; Deng YX; Shao RG; Ma J
    Biomed Environ Sci; 2007 Dec; 20(6):495-501. PubMed ID: 18348409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient suppression of nuclear Cdc2 activity in response to ionizing radiation.
    Kim MJ; Lee JY; Lee SJ
    Oncol Rep; 2008 May; 19(5):1323-9. PubMed ID: 18425394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.