These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19956556)

  • 1. Examination of genome homogeneity in prokaryotes using genomic signatures.
    Bohlin J; Skjerve E
    PLoS One; 2009 Dec; 4(12):e8113. PubMed ID: 19956556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability and applications of statistical methods based on oligonucleotide frequencies in bacterial and archaeal genomes.
    Bohlin J; Skjerve E; Ussery DW
    BMC Genomics; 2008 Feb; 9():104. PubMed ID: 18307761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of intra-genomic GC content homogeneity within prokaryotes.
    Bohlin J; Snipen L; Hardy SP; Kristoffersen AB; Lagesen K; Dønsvik T; Skjerve E; Ussery DW
    BMC Genomics; 2010 Aug; 11():464. PubMed ID: 20691090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of genomic signatures in prokaryotes using multinomial regression and hierarchical clustering.
    Bohlin J; Skjerve E; Ussery DW
    BMC Genomics; 2009 Oct; 10():487. PubMed ID: 19845945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural selection retains overrepresented out-of-frame stop codons against frameshift peptides in prokaryotes.
    Tse H; Cai JJ; Tsoi HW; Lam EP; Yuen KY
    BMC Genomics; 2010 Sep; 11():491. PubMed ID: 20828396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations of oligonucleotide usage variance within and between prokaryotes.
    Bohlin J; Skjerve E; Ussery DW
    PLoS Comput Biol; 2008 Apr; 4(4):e1000057. PubMed ID: 18421372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid usage is asymmetrically biased in AT- and GC-rich microbial genomes.
    Bohlin J; Brynildsrud O; Vesth T; Skjerve E; Ussery DW
    PLoS One; 2013; 8(7):e69878. PubMed ID: 23922837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global features of sequences of bacterial chromosomes, plasmids and phages revealed by analysis of oligonucleotide usage patterns.
    Reva ON; Tümmler B
    BMC Bioinformatics; 2004 Jul; 5():90. PubMed ID: 15239845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic signatures in microbes -- properties and applications.
    Bohlin J
    ScientificWorldJournal; 2011 Mar; 11():715-25. PubMed ID: 21442149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the species-specificity in genomic signatures, synonymous codon choice, amino acid usage and G+C content.
    Sandberg R; Bränden CI; Ernberg I; Cöster J
    Gene; 2003 Jun; 311():35-42. PubMed ID: 12853136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of bias in the relative abundance of oligonucleotides in DNA sequences.
    Elhai J
    J Comput Biol; 2001; 8(2):151-75. PubMed ID: 11454303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic comparisons of Brucella spp. and closely related bacteria using base compositional and proteome based methods.
    Bohlin J; Snipen L; Cloeckaert A; Lagesen K; Ussery D; Kristoffersen AB; Godfroid J
    BMC Evol Biol; 2010 Aug; 10():249. PubMed ID: 20707916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic signals in DNA composition: limitations and prospects.
    Mrázek J
    Mol Biol Evol; 2009 May; 26(5):1163-9. PubMed ID: 19233962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic GC level, optimal growth temperature, and genome size in prokaryotes.
    Musto H; Naya H; Zavala A; Romero H; Alvarez-Valín F; Bernardi G
    Biochem Biophys Res Commun; 2006 Aug; 347(1):1-3. PubMed ID: 16815305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and characterization of horizontal transfers in prokaryotes using genomic signature.
    Dufraigne C; Fertil B; Lespinats S; Giron A; Deschavanne P
    Nucleic Acids Res; 2005 Jan; 33(1):e6. PubMed ID: 15653627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the correlation between genomic G+C content and optimal growth temperature in prokaryotes: data quality and confounding factors.
    Wang HC; Susko E; Roger AJ
    Biochem Biophys Res Commun; 2006 Apr; 342(3):681-4. PubMed ID: 16499870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic prokaryotes do not have higher GC contents than anaerobic prokaryotes, but obligate aerobic prokaryotes have.
    Aslam S; Lan XR; Zhang BW; Chen ZL; Wang L; Niu DK
    BMC Evol Biol; 2019 Jan; 19(1):35. PubMed ID: 30691392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligonucleotide bias in Bacillus subtilis: general trends and taxonomic comparisons.
    Rocha EP; Viari A; Danchin A
    Nucleic Acids Res; 1998 Jun; 26(12):2971-80. PubMed ID: 9611243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring parameters shaping amino acid usage in prokaryotic genomes via Bayesian MCMC methods.
    Naya H; Gianola D; Romero H; Urioste JI; Musto H
    Mol Biol Evol; 2006 Jan; 23(1):203-11. PubMed ID: 16162860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple sequence repeats in prokaryotic genomes.
    Mrázek J; Guo X; Shah A
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8472-7. PubMed ID: 17485665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.