These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
445 related articles for article (PubMed ID: 19956565)
1. SUMO modification regulates BLM and RAD51 interaction at damaged replication forks. Ouyang KJ; Woo LL; Zhu J; Huo D; Matunis MJ; Ellis NA PLoS Biol; 2009 Dec; 7(12):e1000252. PubMed ID: 19956565 [TBL] [Abstract][Full Text] [Related]
2. BLM SUMOylation regulates ssDNA accumulation at stalled replication forks. Ouyang KJ; Yagle MK; Matunis MJ; Ellis NA Front Genet; 2013; 4():167. PubMed ID: 24027577 [TBL] [Abstract][Full Text] [Related]
3. Rescue of collapsed replication forks is dependent on NSMCE2 to prevent mitotic DNA damage. Pond KW; de Renty C; Yagle MK; Ellis NA PLoS Genet; 2019 Feb; 15(2):e1007942. PubMed ID: 30735491 [TBL] [Abstract][Full Text] [Related]
4. BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. Sengupta S; Linke SP; Pedeux R; Yang Q; Farnsworth J; Garfield SH; Valerie K; Shay JW; Ellis NA; Wasylyk B; Harris CC EMBO J; 2003 Mar; 22(5):1210-22. PubMed ID: 12606585 [TBL] [Abstract][Full Text] [Related]
5. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Petermann E; Orta ML; Issaeva N; Schultz N; Helleday T Mol Cell; 2010 Feb; 37(4):492-502. PubMed ID: 20188668 [TBL] [Abstract][Full Text] [Related]
6. Activation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage. Shima H; Suzuki H; Sun J; Kono K; Shi L; Kinomura A; Horikoshi Y; Ikura T; Ikura M; Kanaar R; Igarashi K; Saitoh H; Kurumizaka H; Tashiro S J Cell Sci; 2013 Nov; 126(Pt 22):5284-92. PubMed ID: 24046452 [TBL] [Abstract][Full Text] [Related]
7. Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. Wu L; Davies SL; Levitt NC; Hickson ID J Biol Chem; 2001 Jun; 276(22):19375-81. PubMed ID: 11278509 [TBL] [Abstract][Full Text] [Related]
8. The mismatch DNA repair heterodimer, hMSH2/6, regulates BLM helicase. Yang Q; Zhang R; Wang XW; Linke SP; Sengupta S; Hickson ID; Pedrazzi G; Perrera C; Stagljar I; Littman SJ; Modrich P; Harris CC Oncogene; 2004 May; 23(21):3749-56. PubMed ID: 15064730 [TBL] [Abstract][Full Text] [Related]
9. Distinct functions of human RECQ helicases WRN and BLM in replication fork recovery and progression after hydroxyurea-induced stalling. Sidorova JM; Kehrli K; Mao F; Monnat R DNA Repair (Amst); 2013 Feb; 12(2):128-39. PubMed ID: 23253856 [TBL] [Abstract][Full Text] [Related]
10. The Drosophila Werner exonuclease participates in an exonuclease-independent response to replication stress. Bolterstein E; Rivero R; Marquez M; McVey M Genetics; 2014 Jun; 197(2):643-52. PubMed ID: 24709634 [TBL] [Abstract][Full Text] [Related]
11. Endogenous gamma-H2AX-ATM-Chk2 checkpoint activation in Bloom's syndrome helicase deficient cells is related to DNA replication arrested forks. Rao VA; Conti C; Guirouilh-Barbat J; Nakamura A; Miao ZH; Davies SL; Saccá B; Hickson ID; Bensimon A; Pommier Y Mol Cancer Res; 2007 Jul; 5(7):713-24. PubMed ID: 17634426 [TBL] [Abstract][Full Text] [Related]
12. BLM helicase regulates DNA repair by counteracting RAD51 loading at DNA double-strand break sites. Patel DS; Misenko SM; Her J; Bunting SF J Cell Biol; 2017 Nov; 216(11):3521-3534. PubMed ID: 28912125 [TBL] [Abstract][Full Text] [Related]
13. Functional interaction between the Bloom's syndrome helicase and the RAD51 paralog, RAD51L3 (RAD51D). Braybrooke JP; Li JL; Wu L; Caple F; Benson FE; Hickson ID J Biol Chem; 2003 Nov; 278(48):48357-66. PubMed ID: 12975363 [TBL] [Abstract][Full Text] [Related]
14. BOD1L Is Required to Suppress Deleterious Resection of Stressed Replication Forks. Higgs MR; Reynolds JJ; Winczura A; Blackford AN; Borel V; Miller ES; Zlatanou A; Nieminuszczy J; Ryan EL; Davies NJ; Stankovic T; Boulton SJ; Niedzwiedz W; Stewart GS Mol Cell; 2015 Aug; 59(3):462-77. PubMed ID: 26166705 [TBL] [Abstract][Full Text] [Related]
15. Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes. Hu L; Kim TM; Son MY; Kim SA; Holland CL; Tateishi S; Kim DH; Yew PR; Montagna C; Dumitrache LC; Hasty P Nature; 2013 Sep; 501(7468):569-72. PubMed ID: 24013173 [TBL] [Abstract][Full Text] [Related]
16. Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair. Wan L; Han J; Liu T; Dong S; Xie F; Chen H; Huang J Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10646-51. PubMed ID: 23509288 [TBL] [Abstract][Full Text] [Related]
17. Rad52 sumoylation prevents the toxicity of unproductive Rad51 filaments independently of the anti-recombinase Srs2. Esta A; Ma E; Dupaigne P; Maloisel L; Guerois R; Le Cam E; Veaute X; Coïc E PLoS Genet; 2013; 9(10):e1003833. PubMed ID: 24130504 [TBL] [Abstract][Full Text] [Related]
18. The Saccharomyces cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction-mediated intra-S repair. Sollier J; Driscoll R; Castellucci F; Foiani M; Jackson SP; Branzei D Mol Biol Cell; 2009 Mar; 20(6):1671-82. PubMed ID: 19158389 [TBL] [Abstract][Full Text] [Related]
19. Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Liberi G; Maffioletti G; Lucca C; Chiolo I; Baryshnikova A; Cotta-Ramusino C; Lopes M; Pellicioli A; Haber JE; Foiani M Genes Dev; 2005 Feb; 19(3):339-50. PubMed ID: 15687257 [TBL] [Abstract][Full Text] [Related]
20. Novel pro- and anti-recombination activities of the Bloom's syndrome helicase. Bugreev DV; Yu X; Egelman EH; Mazin AV Genes Dev; 2007 Dec; 21(23):3085-94. PubMed ID: 18003860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]