These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19956601)

  • 1. Ground state robustness as an evolutionary design principle in signaling networks.
    Kartal O; Ebenhöh O
    PLoS One; 2009 Dec; 4(12):e8001. PubMed ID: 19956601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of feedback loops and robustness in network evolution based on Boolean models.
    Kwon YK; Cho KH
    BMC Bioinformatics; 2007 Nov; 8():430. PubMed ID: 17988389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A coherent feedforward loop design principle to sustain robustness of biological networks.
    Le DH; Kwon YK
    Bioinformatics; 2013 Mar; 29(5):630-7. PubMed ID: 23335016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robustness can evolve gradually in complex regulatory gene networks with varying topology.
    Ciliberti S; Martin OC; Wagner A
    PLoS Comput Biol; 2007 Feb; 3(2):e15. PubMed ID: 17274682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propagation of kinetic uncertainties through a canonical topology of the TLR4 signaling network in different regions of biochemical reaction space.
    Gutiérrez J; St Laurent G; Urcuqui-Inchima S
    Theor Biol Med Model; 2010 Mar; 7():7. PubMed ID: 20230643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The topology of robustness and evolvability in evolutionary systems with genotype-phenotype map.
    Ibáñez-Marcelo E; Alarcón T
    J Theor Biol; 2014 Sep; 356():144-62. PubMed ID: 24793533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping network motif tunability and robustness in the design of synthetic signaling circuits.
    Iadevaia S; Nakhleh LK; Azencott R; Ram PT
    PLoS One; 2014; 9(3):e91743. PubMed ID: 24642504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherent coupling of feedback loops: a design principle of cell signaling networks.
    Kwon YK; Cho KH
    Bioinformatics; 2008 Sep; 24(17):1926-32. PubMed ID: 18596076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robustness and evolvability of the human signaling network.
    Kim J; Vandamme D; Kim JR; Munoz AG; Kolch W; Cho KH
    PLoS Comput Biol; 2014 Jul; 10(7):e1003763. PubMed ID: 25077791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pairwise disconnectivity index as a new metric for the topological analysis of regulatory networks.
    Potapov AP; Goemann B; Wingender E
    BMC Bioinformatics; 2008 May; 9():227. PubMed ID: 18454847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical Robustness against Multiple Mutations in Signaling Networks.
    Kwon YK; Kim J; Cho KH
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):996-1002. PubMed ID: 26529781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural discrimination of robustness in transcriptional feedforward loops for pattern formation.
    Rodrigo G; Elena SF
    PLoS One; 2011 Feb; 6(2):e16904. PubMed ID: 21340024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on changes of modularity and robustness by edge-removal mutations in signaling networks.
    Truong CD; Kwon YK
    BMC Syst Biol; 2017 Dec; 11(Suppl 7):125. PubMed ID: 29322936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On biological networks capable of robust adaptation in the presence of uncertainties: A linear systems-theoretic approach.
    Bhattacharya P; Raman K; Tangirala AK
    Math Biosci; 2023 Apr; 358():108984. PubMed ID: 36804384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Threshold-dominated regulation hides genetic variation in gene expression networks.
    Gjuvsland AB; Plahte E; Omholt SW
    BMC Syst Biol; 2007 Dec; 1():57. PubMed ID: 18062810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of assortativity on the robustness of signal-integration logic in gene regulatory networks.
    Pechenick DA; Payne JL; Moore JH
    J Theor Biol; 2012 Mar; 296():21-32. PubMed ID: 22155134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration in topological organization characteristics of gray matter covariance networks in patients with prediabetes.
    Deng L; Liu H; Liu W; Liao Y; Liang Q; Wang W
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Oct; 47(10):1375-1384. PubMed ID: 36411688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutral evolution of mutational robustness.
    van Nimwegen E; Crutchfield JP; Huynen M
    Proc Natl Acad Sci U S A; 1999 Aug; 96(17):9716-20. PubMed ID: 10449760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Algebraic connectivity may explain the evolution of gene regulatory networks.
    Nikoloski Z; May P; Selbig J
    J Theor Biol; 2010 Nov; 267(1):7-14. PubMed ID: 20682325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.