These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19956750)

  • 1. A high-throughput screening approach to discovering good forms of biologically inspired visual representation.
    Pinto N; Doukhan D; DiCarlo JJ; Cox DD
    PLoS Comput Biol; 2009 Nov; 5(11):e1000579. PubMed ID: 19956750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust object recognition with cortex-like mechanisms.
    Serre T; Wolf L; Bileschi S; Riesenhuber M; Poggio T
    IEEE Trans Pattern Anal Mach Intell; 2007 Mar; 29(3):411-26. PubMed ID: 17224612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Object detection through search with a foveated visual system.
    Akbas E; Eckstein MP
    PLoS Comput Biol; 2017 Oct; 13(10):e1005743. PubMed ID: 28991906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time unconstrained object recognition: a processing pipeline based on the mammalian visual system.
    Aguilar M; Peot MA; Zhou J; Simons S; Liao Y; Metwalli N; Anderson MB
    IEEE Pulse; 2012 Mar; 3(2):53-6. PubMed ID: 22481747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why is real-world visual object recognition hard?
    Pinto N; Cox DD; DiCarlo JJ
    PLoS Comput Biol; 2008 Jan; 4(1):e27. PubMed ID: 18225950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational object recognition: a biologically motivated approach.
    Kietzmann TC; Lange S; Riedmiller M
    Biol Cybern; 2009 Jan; 100(1):59-79. PubMed ID: 19089445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved object recognition using neural networks trained to mimic the brain's statistical properties.
    Federer C; Xu H; Fyshe A; Zylberberg J
    Neural Netw; 2020 Nov; 131():103-114. PubMed ID: 32771841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of bioinspired models for pattern recognition in biomimetic systems.
    Pioggia G; Ferro M; Francesco FD; Ahluwalia A; De Rossi D
    Bioinspir Biomim; 2008 Mar; 3():016004. PubMed ID: 18364563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A visual-attention model using Earth Mover's Distance-based saliency measurement and nonlinear feature combination.
    Lin Y; Tang YY; Fang B; Shang Z; Huang Y; Wang S
    IEEE Trans Pattern Anal Mach Intell; 2013 Feb; 35(2):314-28. PubMed ID: 22641707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of nonlinear human visual system components on performance of a channelized Hotelling observer in structured backgrounds.
    Zhang Y; Pham BT; Eckstein MP
    IEEE Trans Med Imaging; 2006 Oct; 25(10):1348-62. PubMed ID: 17024838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary optimization of a hierarchical object recognition model.
    Schneider G; Wersing H; Sendhoff B; Körner E
    IEEE Trans Syst Man Cybern B Cybern; 2005 Jun; 35(3):426-37. PubMed ID: 15971912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomous spacecraft landing through human pre-attentive vision.
    Schiavone G; Izzo D; Simões LF; de Croon GC
    Bioinspir Biomim; 2012 Jun; 7(2):025007. PubMed ID: 22617300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortically coupled computer vision for rapid image search.
    Gerson AD; Parra LC; Sajda P
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):174-9. PubMed ID: 16792287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introducing memory and association mechanism into a biologically inspired visual model.
    Qiao H; Li Y; Tang T; Wang P
    IEEE Trans Cybern; 2014 Sep; 44(9):1485-96. PubMed ID: 24184793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An early underwater artificial vision model in ocean investigations via independent component analysis.
    Nian R; Liu F; He B
    Sensors (Basel); 2013 Jul; 13(7):9104-31. PubMed ID: 23863855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid learning network for shift, orientation, and scaling invariant pattern recognition.
    Wang R
    Network; 2001 Nov; 12(4):493-512. PubMed ID: 11762901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spiking perceptrons.
    Rowcliffe P; Feng J; Buxton H
    IEEE Trans Neural Netw; 2006 May; 17(3):803-7. PubMed ID: 16722183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A perceptually inspired variational framework for color enhancement.
    Palma-Amestoy R; Provenzi E; Bertalmío M; Caselles V
    IEEE Trans Pattern Anal Mach Intell; 2009 Mar; 31(3):458-74. PubMed ID: 19147875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suitability of V1 energy models for object classification.
    Bergstra J; Bengio Y; Louradour J
    Neural Comput; 2011 Mar; 23(3):774-90. PubMed ID: 21162668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.