These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 19957039)

  • 1. A model of the lower limb for analysis of human movement.
    Arnold EM; Ward SR; Lieber RL; Delp SL
    Ann Biomed Eng; 2010 Feb; 38(2):269-79. PubMed ID: 19957039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis.
    Ackland DC; Lin YC; Pandy MG
    J Biomech; 2012 May; 45(8):1463-71. PubMed ID: 22507351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait.
    Dumas R; Moissenet F; Gasparutto X; Cheze L
    Proc Inst Mech Eng H; 2012 Feb; 226(2):146-60. PubMed ID: 22468466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why are Antagonist Muscles Co-activated in My Simulation? A Musculoskeletal Model for Analysing Human Locomotor Tasks.
    Lai AKM; Arnold AS; Wakeling JM
    Ann Biomed Eng; 2017 Dec; 45(12):2762-2774. PubMed ID: 28900782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-dimensional musculoskeletal model of the chimpanzee (Pan troglodytes) pelvis and hind limb.
    O'Neill MC; Lee LF; Larson SG; Demes B; Stern JT; Umberger BR
    J Exp Biol; 2013 Oct; 216(Pt 19):3709-23. PubMed ID: 24006347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibre operating lengths of human lower limb muscles during walking.
    Arnold EM; Delp SL
    Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1530-9. PubMed ID: 21502124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of lower limb musculoskeletal models with clinical relevance is dependent upon the fidelity of the mathematical description of the lower limb. Part I: Equations of motion.
    Cleather DJ; Bull AM
    Proc Inst Mech Eng H; 2012 Feb; 226(2):120-32. PubMed ID: 22468464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Special issue on musculoskele modelling of the lower limb.
    Bull AM; Cleather DJ
    Proc Inst Mech Eng H; 2012 Feb; 226(2):81. PubMed ID: 22468459
    [No Abstract]   [Full Text] [Related]  

  • 9. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of different methods for estimating muscle forces in human movement.
    Lin YC; Dorn TW; Schache AG; Pandy MG
    Proc Inst Mech Eng H; 2012 Feb; 226(2):103-12. PubMed ID: 22468462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity.
    Arnold AS; Salinas S; Asakawa DJ; Delp SL
    Comput Aided Surg; 2000; 5(2):108-19. PubMed ID: 10862133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle discretization affects the loading transferred to bones in lower-limb musculoskeletal models.
    Valente G; Martelli S; Taddei F; Farinella G; Viceconti M
    Proc Inst Mech Eng H; 2012 Feb; 226(2):161-9. PubMed ID: 22468467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force- and moment-generating capacities of muscles in the distal forelimb of the horse.
    Brown NA; Pandy MG; Kawcak CE; McIlwraith CW
    J Anat; 2003 Jul; 203(1):101-13. PubMed ID: 12892409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling, simulation and optimisation of a human vertical jump.
    Spägele T; Kistner A; Gollhofer A
    J Biomech; 1999 May; 32(5):521-30. PubMed ID: 10327006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On validation of multibody musculoskeletal models.
    Lund ME; de Zee M; Andersen MS; Rasmussen J
    Proc Inst Mech Eng H; 2012 Feb; 226(2):82-94. PubMed ID: 22468460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The redundant nature of locomotor optimization laws.
    Collins JJ
    J Biomech; 1995 Mar; 28(3):251-67. PubMed ID: 7730385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optimization-based simultaneous approach to the determination of muscular, ligamentous, and joint contact forces provides insight into musculoligamentous interaction.
    Cleather DJ; Bull AM
    Ann Biomed Eng; 2011 Jul; 39(7):1925-34. PubMed ID: 21445690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are fixed limb inertial models valid for dynamic simulations of human movement?
    Clark T; Hawkins D
    J Biomech; 2010 Oct; 43(14):2695-701. PubMed ID: 20673667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of toe marker placement error on joint kinematics and muscle forces using OpenSim gait simulation.
    Xu H; Merryweather A; Bloswick D; Mao Q; Wang T
    Biomed Mater Eng; 2015; 26 Suppl 1():S685-91. PubMed ID: 26406064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.